Abstract
Smartphones have become an integral part of life in this world and play key roles as productivity tools, entertainment, and communication. Also, with these day-to-day improvements in technology, smartphones have evolved to provide strong power with little effort. However, increasing dependence on these has led towards the rising concern about their battery life. With every growing demand for a longer battery life, there has been a great improvement in battery technology. Starting from early models all the way up to today's latest technologies, this study focuses on lithium-ion batteries and a selection of the emerging alternatives. The promising future innovations which include solid-state, sodium-ion, graphene-based, lithium-sulfur, and lithium-silicon batteries are compared against the technology of lithium ions available today and are depicted as bringing about a new revolution in the performance level of batteries as well as extending smartphone usage.
Keywords
Solid-State Battery, Graphene-Based Battery, Sodium-Ion Battery, Lithium-Sulfur Battery, Lithium-Silicon Battery, Lithium-Ion Battery,Downloads
References
- Z. Pandur, M. Šušnjar, M. Bacic, Battery Technology. Croatian journal of forest engineering, 42(1), (2020) 135–148. https://doi.org/10.5552/crojfe.2021.798
- Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.Q. Huang, D. Yu, Y. Liu, M. Magdalena Titirici, Y.L. Chueh, H. Yu, Q. Zhang, A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), (2019) 6-32. https://doi.org/10.1002/inf2.12000
- C. Glaize, S. Genies, (2012) Nickel–Metal Hydride Batteries. Lead and Nickel Electrochemical Batteries. https://doi.org/10.1002/9781118562659.ch7
- Y. Chon, G. Lee, R. Ha, H. Cha, Crowdsensing-based smartphone use guide for battery life extension. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, (2016) 958-969. https://doi.org/10.1145/2971648.2971728
- K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Science advances, 4(6), (2018) eaas9820. https://doi.org/10.1126/sciadv.aas9820
- A.K. Koech, Gershom Mwandila, F. Mulolani, P. Mwaanga, Lithium-ion Battery Fundamentals and Exploration of Cathode Materials: A Review. South African Journal of Chemical Engineering, 50, (2024) 321-339. https://doi.org/10.1016/j.sajce.2024.09.008
- Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon, T. Rüther, A.F. Hollenkamp, A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2(1), (2021) 167-205. https://doi.org/10.3390/suschem2010011
- G.E. Blomgren, The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), (2016) A5019. https://doi.org/10.1149/2.0251701jes
- E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez, M. Colledani, Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management, 264, (2020) 110500. https://doi.org/10.1016/j.jenvman.2020.110500
- M.D. Ahmed, K.M. Maraz, Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects. Materials Engineering Research, 5(1), (2023) 245-255. https://doi.org/10.25082/MER.2023.01.001
- J. Hassoun, S. Panero, P. Reale, B. Scrosati, A new, safe, high‐rate and high‐energy polymer lithium‐ion battery. Advanced Materials, 21(47), (2009) 4807-4810. https://doi.org/10.1002/adma.200900470
- Y. Su, Smartphone Wireless charging. Highlights in Science, Engineering and Technology, 27, (2022) 671–680. https://doi.org/10.54097/hset.v27i.3830
- L. Lavagna, G. Meligrana, C. Gerbaldi, A. Tagliaferro, M. Bartoli, Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies, 13(18), (2020) 4867. https://doi.org/10.3390/en13184867
- C. Ling, A review of the recent progress in battery informatics. npj Computational Materials, 8(1), (2022). https://doi.org/10.1038/s41524-022-00713-x
- I. Jeong, D.-Y. Han, J. Hwang, W.-J. Song, S. Park, Foldable batteries: from materials to devices. Nanoscale Advances, 4(6), (2022) 1494-1516. https://doi.org/10.1039/D1NA00892G
- J. Chen, J. Wu, X. Wang, A. Zhou, Z. Yang, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Materials, 35, (2021) 70-87. https://doi.org/10.1016/j.ensm.2020.11.017
- Z. Li, J. Fu, X. Guo, How to commercialize solid-state batteries: a perspective from solid electrolytes. National Science Open, 2(1), (2023) 20220036. https://doi.org/10.1360/nso/20220036
- M. Wagemaker, M. Huijben, M. Tromp, Where are those promising solid-state batteries?. Europhysics News, 52(5), (2021) 28-31. https://doi.org/10.1051/epn/2021504
- N. Imanishi, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, Lithium metal anode for high-power and high-capacity rechargeable batteries. Journal of Energy and Power Technology, 3(2), (2021)1-28. http://dx.doi.org/10.21926/jept.2102019
- F. Thomas, L. Mahdi, J. Lemaire, D.M.F. Santos, Technological Advances and Market Developments of Solid-State Batteries: A Review. Materials, 17(1), (2024) 239. https://doi.org/10.3390/ma17010239
- Z. Karkar, M.S.E. Houache, C.H. Yim, Y. Abu-Lebdeh, An Industrial Perspective and Intellectual Property Landscape on Solid-State Battery Technology with a Focus on Solid-State Electrolyte Chemistries. Batteries, 10(1)), (2024) 24. https://doi.org/10.3390/batteries10010024
- D. Zhang, Z. Liu, Y. Wu, S. Ji, Z. Yuan, J. Liu, M. Zhu, In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid‐state lithium metal batteries. Advanced Science, 9(12), (2022) 2104277. https://doi.org/10.1002/advs.202104277
- D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature Nanotechnology, 15(3), (2020) 170–180. https://doi.org/10.1038/s41565-020-0657-x
- Abniel Machín, M.C. Cotto, F. Díaz, José Duconge, C. Morant, F. Márquez, Environmental Aspects and Recycling of Solid-State Batteries: A Comprehensive Review. Batteries, 10(7), (2024) 255–255. https://doi.org/10.3390/batteries10070255
- C. Li, Z.Y. Wang, Z.J. He, Y.J. Li, J. Mao, D.K. H.Dai, C. Yan, J.C. Zheng, An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies, 29, (2021) e00297. https://doi.org/10.1016/j.susmat.2021.e00297
- Z. Moradi, Amirmasoud Lanjan, R. Tyagi, S. Srinivasan, Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, (2023)109048–109048. https://doi.org/10.1016/j.est.2023.109048
- R. Pacios, A. Villaverde, E. Martínez, Montse Casas‐Cabañas, Frédéric Aguesse, Andriy Kvasha, Roadmap for Competitive Production of Solid‐State Batteries: How to Convert a Promise into Reality Advanced Energy Materials, 13(30), (2023) 2301018. https://doi.org/10.1002/aenm.202301018
- Y. Zhong, X. Zhang, Y. Zhang, P. Jia, Y. Xi, L. Kang, Z. Yu, Understanding and unveiling the electro‐chemo‐mechanical behavior in solid‐state batteries. SusMat, 4(2), (2024) e190. https://doi.org/10.1002/sus2.190
- A. Machín, C. Morant, F. Márquez, Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations. Batteries, 10(1), 29. https://doi.org/10.3390/batteries10010029
- M. Li, Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes. Energies, 16(24), (2023) 8004. https://doi.org/10.3390/en16248004
- X. Yang, A.L. Rogach, Anodes and Sodium‐Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 10(22), (2020) 2000288. https://doi.org/10.1002/aenm.202000288
- A.N. Singh, M. Islam, A. Meena, M. Faizan, D. Han, C. Bathula, K.W. Nam, Unleashing the potential of sodium‐ion batteries: current state and future directions for sustainable energy storage. Advanced Functional Materials, 33(46), (2023) 2304617. https://doi.org/10.1002/adfm.202304617
- A. Chandra, Unlocking the Potential of Sodium Ion Batteries: A Comprehensive Review. Frontiers in Advanced Materials Research, 5(2), (2023) 43–55. https://doi.org/10.34256/famr2325
- H. Zhong, Comparative study of commercialized sodium-ion batteries and lithium-ion batteries. Applied and Computational Engineering, 26(10), (2023) 233–239. https://doi.org/10.54254/2755-2721/26/20230838
- K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie (International ed. in English), 57(1), (2018) 102–120. https://doi.org/10.1002/anie.201703772
- E. Bekyarova, Design of Carbon Nanomaterials for Energy Applications. ECS Meeting Abstracts, 1(7), (2022) 618–618. https://doi.org/10.1149/MA2022-017618mtgabs
- X. Chen, Y. Tian, Review of Graphene in Cathode Materials for Lithium-Ion Batteries. Energy & Fuels, 35(5), (2021) 3572–3580. https://doi.org/10.1021/acs.energyfuels.0c04191
- J. Song, Applications of Graphene Materials in Lithium-ion Batteries. MATEC web of conferences, 386, (2023) 01010. https://doi.org/10.1051/matecconf/202338601010
- H. Qin, Z. Mo, J. Lu, X. Sui, Z. Song, B. Chen, Y. Zhang, Z. Zhang, X. Lei, A. Lu, Z. Mo, Ultrafast transformation of natural graphite into self-supporting graphene as superior anode materials for lithium-ion batteries. Carbon, 216, (2024) 118559. https://doi.org/10.1016/j.carbon.2023.118559
- M. Mahmud, A.A. Shafin, M.S. Rahman, (2021) Overview of Graphene as Promising Electrode Materials for Li-ion Battery. SSRN, 3996387. https://dx.doi.org/10.2139/ssrn.3996387
- H. Yang, L. Sun, S. Zhai, X. Wang, C. Liu, H. Wu, W. Deng, Ordered-range tuning of flash graphene for fast-charging lithium-ion batteries. ACS Applied Nano Materials, 6(4), (2023) 2450-2458. https://doi.org/10.1021/acsanm.2c04717
- M. Zhang, N. Song, T. Li, F. Tu, B. Zhang, Y. Jin, L. Song, General Construction of Ultrathick Sulfur Cathode for High‐Energy‐Density Lithium–Sulfur Battery. Energy Technology, 11(6), (2023) 2201409. https://doi.org/10.1002/ente.202201409
- M. Xiao, Z. Xing, Recent Progress of Lithium-Sulfur Batteries. Batteries, 9(2), (2023) 79. https://doi.org/10.3390/batteries9020079
- W. Jan, A.D. Khan, F.J. Iftikhar, G. Ali, Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices. Journal of Energy Storage, 72, (2023) 108559. https://doi.org/10.1016/j.est.2023.108559
- M. Zhao, B. Li, H. Peng, H. Yuan, J. Wei, J.Q. Huang, Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angewandte Chemie International Edition, 59(31), (2020) 12636-12652. https://doi.org/10.1002/anie.201909339
- C.V. Lopez, C.P. Maladeniya, R.C. Smith, Lithium-Sulfur Batteries: Advances and Trends. Electrochem, 1(3), (2020) 226–259. https://doi.org/10.3390/electrochem1030016
- Y. He, Z. Chang, S. Wu, H. Zhou, Effective strategies for long-cycle life lithium–sulfur batteries. Journal of Materials Chemistry A, 6(15), (2018) 6155-6182. https://doi.org/10.1039/C8TA01115J
- M. Feng, Z. Li, L. Guo, R. Yang, R. Feng, X. Wang, Y. Pan, R. Li, B. Gong, Electrodeposition preparation and electrochemical properties of silicon anode. Materials Today Communications, 38, (2024) 108122. https://doi.org/10.1016/j.mtcomm.2024.108122
- H. Zhong, D. Liu, X. Yuan, X. Xiong, K. Han, Advanced Micro/Nanostructure Silicon-Based Anode Materials for High-Energy Lithium-Ion Batteries: From Liquid-to Solid-State Batteries. Energy & Fuels, 38(9), (2024) 7693-7732. https://doi.org/10.1021/acs.energyfuels.4c00633
- M. Grandjean, T. Meyer, Cédric Haon, Pascale Chenevier, Selection and Optimisation of Silicon Anodes for All-Solid-State Batteries. ECS Meeting Abstracts, MA2022-01(2), (2022) 408. https://doi.org/10.1149/MA2022-012408mtgabs
- Y. Jia, P. Zhao, D.P. Finegan, J. Xu, Dynamics of Intra‐Cell Thermal Front Propagation in Lithium‐Ion Battery Safety Issues. Advanced Energy Materials, 14(41), (2024) 2400621. https://doi.org/10.1002/aenm.202400621
- M.H. Bertran, E. Molinari, D. Prezzi, (2024) Evolution of the Solid Electrolyte Interphase in Si Nanoparticle Based Li-Ion Battery Anodes: Insights from Ab Initio Simulations of Core-Level Spectroscopies. ECS Meeting, (23), (2024) 1382. https://doi.org/10.1149/MA2024-01231382mtgabs
- M. Yang, D.Y. Kim, J.H. Shim, Study on Electrochemical Characteristics of Crystal Structure Changes Effects of Silicon Anode Materials for Lithium Ion Batteries. The Electrochemical Society MCS Meeting Abstracts, 245(2), (2024) 277. https://doi.org/10.1149/MA2024-012277mtgabs
- Y. Du, Nanostructures of silicon anodes in Li-ion batteries. Journal of Physics: Conference Series, 2399(1), (2022) 012015. https://doi.org/10.1088/1742-6596/2399/1/012015
- M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng, G. Li, X. Song, Y. Wang, Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications. Nano-Micro Letters, 16(1), (2024) 179. https://doi.org/10.1007/s40820-024-01388-3
- S. Hansen, F. Hahn, H. Krueger, F. Hoffmann, M. Andresen, R.R. Adelung, M. Liserre, Reliability of silicon battery technology and power electronics based energy conversion. IEEE Power Electronics Magazine, 8(2), (2021) 60-69. https://doi.org/10.1109/MPEL.2021.3075756
- S. Xu, Application of silicon-based nano materials for improving the performance of battery. Applied and Computational Engineering, 58(1), (2024) 26–30. https://doi.org/10.54254/2755-2721/58/20240682
Articles

