Abstract

Smartphones have become an integral part of life in this world and play key roles as productivity tools, entertainment, and communication. Also, with these day-to-day improvements in technology, smartphones have evolved to provide strong power with little effort. However, increasing dependence on these has led towards the rising concern about their battery life. With every growing demand for a longer battery life, there has been a great improvement in battery technology. Starting from early models all the way up to today's latest technologies, this study focuses on lithium-ion batteries and a selection of the emerging alternatives. The promising future innovations which include solid-state, sodium-ion, graphene-based, lithium-sulfur, and lithium-silicon batteries are compared against the technology of lithium ions available today and are depicted as bringing about a new revolution in the performance level of batteries as well as extending smartphone usage.

Keywords

Solid-State Battery, Graphene-Based Battery, Sodium-Ion Battery, Lithium-Sulfur Battery, Lithium-Silicon Battery, Lithium-Ion Battery,

Downloads

Download data is not yet available.

References

  1. Z. Pandur, M. Šušnjar, M. Bacic, Battery Technology. Croatian journal of forest engineering, 42(1), (2020) 135–148. https://doi.org/10.5552/crojfe.2021.798
  2. Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J.Q. Huang, D. Yu, Y. Liu, M. Magdalena Titirici, Y.L. Chueh, H. Yu, Q. Zhang, A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), (2019) 6-32. https://doi.org/10.1002/inf2.12000
  3. C. Glaize, S. Genies, (2012) Nickel–Metal Hydride Batteries. Lead and Nickel Electrochemical Batteries. https://doi.org/10.1002/9781118562659.ch7
  4. Y. Chon, G. Lee, R. Ha, H. Cha, Crowdsensing-based smartphone use guide for battery life extension. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, (2016) 958-969. https://doi.org/10.1145/2971648.2971728
  5. K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety. Science advances, 4(6), (2018) eaas9820. https://doi.org/10.1126/sciadv.aas9820
  6. A.K. Koech, Gershom Mwandila, F. Mulolani, P. Mwaanga, Lithium-ion Battery Fundamentals and Exploration of Cathode Materials: A Review. South African Journal of Chemical Engineering, 50, (2024) 321-339. https://doi.org/10.1016/j.sajce.2024.09.008
  7. Y. Zhao, O. Pohl, A.I. Bhatt, G.E. Collis, P.J. Mahon, T. Rüther, A.F. Hollenkamp, A review on battery market trends, second-life reuse, and recycling. Sustainable Chemistry, 2(1), (2021) 167-205. https://doi.org/10.3390/suschem2010011
  8. G.E. Blomgren, The development and future of lithium ion batteries. Journal of The Electrochemical Society, 164(1), (2016) A5019. https://doi.org/10.1149/2.0251701jes
  9. E. Mossali, N. Picone, L. Gentilini, O. Rodrìguez, J.M. Pérez, M. Colledani, Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Journal of Environmental Management, 264, (2020) 110500. https://doi.org/10.1016/j.jenvman.2020.110500
  10. M.D. Ahmed, K.M. Maraz, Polymer electrolyte design strategies for high-performance and safe lithium-ion batteries: Recent developments and future prospects. Materials Engineering Research, 5(1), (2023) 245-255. https://doi.org/10.25082/MER.2023.01.001
  11. J. Hassoun, S. Panero, P. Reale, B. Scrosati, A new, safe, high‐rate and high‐energy polymer lithium‐ion battery. Advanced Materials, 21(47), (2009) 4807-4810. https://doi.org/10.1002/adma.200900470
  12. Y. Su, Smartphone Wireless charging. Highlights in Science, Engineering and Technology, 27, (2022) 671–680. https://doi.org/10.54097/hset.v27i.3830
  13. L. Lavagna, G. Meligrana, C. Gerbaldi, A. Tagliaferro, M. Bartoli, Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies, 13(18), (2020) 4867. https://doi.org/10.3390/en13184867
  14. C. Ling, A review of the recent progress in battery informatics. npj Computational Materials, 8(1), (2022). https://doi.org/10.1038/s41524-022-00713-x
  15. I. Jeong, D.-Y. Han, J. Hwang, W.-J. Song, S. Park, Foldable batteries: from materials to devices. Nanoscale Advances, 4(6), (2022) 1494-1516. https://doi.org/10.1039/D1NA00892G
  16. J. Chen, J. Wu, X. Wang, A. Zhou, Z. Yang, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Materials, 35, (2021) 70-87. https://doi.org/10.1016/j.ensm.2020.11.017
  17. Z. Li, J. Fu, X. Guo, How to commercialize solid-state batteries: a perspective from solid electrolytes. National Science Open, 2(1), (2023) 20220036. https://doi.org/10.1360/nso/20220036
  18. M. Wagemaker, M. Huijben, M. Tromp, Where are those promising solid-state batteries?. Europhysics News, 52(5), (2021) 28-31. https://doi.org/10.1051/epn/2021504
  19. N. Imanishi, D. Mori, S. Taminato, Y. Takeda, O. Yamamoto, Lithium metal anode for high-power and high-capacity rechargeable batteries. Journal of Energy and Power Technology, 3(2), (2021)1-28. http://dx.doi.org/10.21926/jept.2102019
  20. F. Thomas, L. Mahdi, J. Lemaire, D.M.F. Santos, Technological Advances and Market Developments of Solid-State Batteries: A Review. Materials, 17(1), (2024) 239. https://doi.org/10.3390/ma17010239
  21. Z. Karkar, M.S.E. Houache, C.H. Yim, Y. Abu-Lebdeh, An Industrial Perspective and Intellectual Property Landscape on Solid-State Battery Technology with a Focus on Solid-State Electrolyte Chemistries. Batteries, 10(1)), (2024) 24. https://doi.org/10.3390/batteries10010024
  22. D. Zhang, Z. Liu, Y. Wu, S. Ji, Z. Yuan, J. Liu, M. Zhu, In situ construction a stable protective layer in polymer electrolyte for ultralong lifespan solid‐state lithium metal batteries. Advanced Science, 9(12), (2022) 2104277. https://doi.org/10.1002/advs.202104277
  23. D.H.S. Tan, A. Banerjee, Z. Chen, Y.S. Meng, From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature Nanotechnology, 15(3), (2020) 170–180. https://doi.org/10.1038/s41565-020-0657-x
  24. Abniel Machín, M.C. Cotto, F. Díaz, José Duconge, C. Morant, F. Márquez, Environmental Aspects and Recycling of Solid-State Batteries: A Comprehensive Review. Batteries, 10(7), (2024) 255–255. https://doi.org/10.3390/batteries10070255
  25. C. Li, Z.Y. Wang, Z.J. He, Y.J. Li, J. Mao, D.K. H.Dai, C. Yan, J.C. Zheng, An advance review of solid-state battery: Challenges, progress and prospects. Sustainable Materials and Technologies, 29, (2021) e00297. https://doi.org/10.1016/j.susmat.2021.e00297
  26. Z. Moradi, Amirmasoud Lanjan, R. Tyagi, S. Srinivasan, Review on current state, challenges, and potential solutions in solid-state batteries research. Journal of Energy Storage, 73, (2023)109048–109048. https://doi.org/10.1016/j.est.2023.109048
  27. R. Pacios, A. Villaverde, E. Martínez, Montse Casas‐Cabañas, Frédéric Aguesse, Andriy Kvasha, Roadmap for Competitive Production of Solid‐State Batteries: How to Convert a Promise into Reality Advanced Energy Materials, 13(30), (2023) 2301018. https://doi.org/10.1002/aenm.202301018
  28. Y. Zhong, X. Zhang, Y. Zhang, P. Jia, Y. Xi, L. Kang, Z. Yu, Understanding and unveiling the electro‐chemo‐mechanical behavior in solid‐state batteries. SusMat, 4(2), (2024) e190. https://doi.org/10.1002/sus2.190
  29. A. Machín, C. Morant, F. Márquez, Advancements and Challenges in Solid-State Battery Technology: An In-Depth Review of Solid Electrolytes and Anode Innovations. Batteries, 10(1), 29. https://doi.org/10.3390/batteries10010029
  30. M. Li, Elevating the Practical Application of Sodium-Ion Batteries through Advanced Characterization Studies on Cathodes. Energies, 16(24), (2023) 8004. https://doi.org/10.3390/en16248004
  31. X. Yang, A.L. Rogach, Anodes and Sodium‐Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 10(22), (2020) 2000288. https://doi.org/10.1002/aenm.202000288
  32. A.N. Singh, M. Islam, A. Meena, M. Faizan, D. Han, C. Bathula, K.W. Nam, Unleashing the potential of sodium‐ion batteries: current state and future directions for sustainable energy storage. Advanced Functional Materials, 33(46), (2023) 2304617. https://doi.org/10.1002/adfm.202304617
  33. A. Chandra, Unlocking the Potential of Sodium Ion Batteries: A Comprehensive Review. Frontiers in Advanced Materials Research, 5(2), (2023) 43–55. https://doi.org/10.34256/famr2325
  34. H. Zhong, Comparative study of commercialized sodium-ion batteries and lithium-ion batteries. Applied and Computational Engineering, 26(10), (2023) 233–239. https://doi.org/10.54254/2755-2721/26/20230838
  35. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angewandte Chemie (International ed. in English), 57(1), (2018) 102–120. https://doi.org/10.1002/anie.201703772
  36. E. Bekyarova, Design of Carbon Nanomaterials for Energy Applications. ECS Meeting Abstracts, 1(7), (2022) 618–618. https://doi.org/10.1149/MA2022-017618mtgabs
  37. X. Chen, Y. Tian, Review of Graphene in Cathode Materials for Lithium-Ion Batteries. Energy & Fuels, 35(5), (2021) 3572–3580. https://doi.org/10.1021/acs.energyfuels.0c04191
  38. J. Song, Applications of Graphene Materials in Lithium-ion Batteries. MATEC web of conferences, 386, (2023) 01010. https://doi.org/10.1051/matecconf/202338601010
  39. H. Qin, Z. Mo, J. Lu, X. Sui, Z. Song, B. Chen, Y. Zhang, Z. Zhang, X. Lei, A. Lu, Z. Mo, Ultrafast transformation of natural graphite into self-supporting graphene as superior anode materials for lithium-ion batteries. Carbon, 216, (2024) 118559. https://doi.org/10.1016/j.carbon.2023.118559
  40. M. Mahmud, A.A. Shafin, M.S. Rahman, (2021) Overview of Graphene as Promising Electrode Materials for Li-ion Battery. SSRN, 3996387. https://dx.doi.org/10.2139/ssrn.3996387
  41. H. Yang, L. Sun, S. Zhai, X. Wang, C. Liu, H. Wu, W. Deng, Ordered-range tuning of flash graphene for fast-charging lithium-ion batteries. ACS Applied Nano Materials, 6(4), (2023) 2450-2458. https://doi.org/10.1021/acsanm.2c04717
  42. M. Zhang, N. Song, T. Li, F. Tu, B. Zhang, Y. Jin, L. Song, General Construction of Ultrathick Sulfur Cathode for High‐Energy‐Density Lithium–Sulfur Battery. Energy Technology, 11(6), (2023) 2201409. https://doi.org/10.1002/ente.202201409
  43. M. Xiao, Z. Xing, Recent Progress of Lithium-Sulfur Batteries. Batteries, 9(2), (2023) 79. https://doi.org/10.3390/batteries9020079
  44. W. Jan, A.D. Khan, F.J. Iftikhar, G. Ali, Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices. Journal of Energy Storage, 72, (2023) 108559. https://doi.org/10.1016/j.est.2023.108559
  45. M. Zhao, B. Li, H. Peng, H. Yuan, J. Wei, J.Q. Huang, Lithium–sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angewandte Chemie International Edition, 59(31), (2020) 12636-12652. https://doi.org/10.1002/anie.201909339
  46. C.V. Lopez, C.P. Maladeniya, R.C. Smith, Lithium-Sulfur Batteries: Advances and Trends. Electrochem, 1(3), (2020) 226–259. https://doi.org/10.3390/electrochem1030016
  47. Y. He, Z. Chang, S. Wu, H. Zhou, Effective strategies for long-cycle life lithium–sulfur batteries. Journal of Materials Chemistry A, 6(15), (2018) 6155-6182. https://doi.org/10.1039/C8TA01115J
  48. M. Feng, Z. Li, L. Guo, R. Yang, R. Feng, X. Wang, Y. Pan, R. Li, B. Gong, Electrodeposition preparation and electrochemical properties of silicon anode. Materials Today Communications, 38, (2024) 108122. https://doi.org/10.1016/j.mtcomm.2024.108122
  49. H. Zhong, D. Liu, X. Yuan, X. Xiong, K. Han, Advanced Micro/Nanostructure Silicon-Based Anode Materials for High-Energy Lithium-Ion Batteries: From Liquid-to Solid-State Batteries. Energy & Fuels, 38(9), (2024) 7693-7732. https://doi.org/10.1021/acs.energyfuels.4c00633
  50. M. Grandjean, T. Meyer, Cédric Haon, Pascale Chenevier, Selection and Optimisation of Silicon Anodes for All-Solid-State Batteries. ECS Meeting Abstracts, MA2022-01(2), (2022) 408. https://doi.org/10.1149/MA2022-012408mtgabs
  51. Y. Jia, P. Zhao, D.P. Finegan, J. Xu, Dynamics of Intra‐Cell Thermal Front Propagation in Lithium‐Ion Battery Safety Issues. Advanced Energy Materials, 14(41), (2024) 2400621. https://doi.org/10.1002/aenm.202400621
  52. M.H. Bertran, E. Molinari, D. Prezzi, (2024) Evolution of the Solid Electrolyte Interphase in Si Nanoparticle Based Li-Ion Battery Anodes: Insights from Ab Initio Simulations of Core-Level Spectroscopies. ECS Meeting, (23), (2024) 1382. https://doi.org/10.1149/MA2024-01231382mtgabs
  53. M. Yang, D.Y. Kim, J.H. Shim, Study on Electrochemical Characteristics of Crystal Structure Changes Effects of Silicon Anode Materials for Lithium Ion Batteries. The Electrochemical Society MCS Meeting Abstracts, 245(2), (2024) 277. https://doi.org/10.1149/MA2024-012277mtgabs
  54. Y. Du, Nanostructures of silicon anodes in Li-ion batteries. Journal of Physics: Conference Series, 2399(1), (2022) 012015. https://doi.org/10.1088/1742-6596/2399/1/012015
  55. M. Khan, S. Yan, M. Ali, F. Mahmood, Y. Zheng, G. Li, X. Song, Y. Wang, Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications. Nano-Micro Letters, 16(1), (2024) 179. https://doi.org/10.1007/s40820-024-01388-3
  56. S. Hansen, F. Hahn, H. Krueger, F. Hoffmann, M. Andresen, R.R. Adelung, M. Liserre, Reliability of silicon battery technology and power electronics based energy conversion. IEEE Power Electronics Magazine, 8(2), (2021) 60-69. https://doi.org/10.1109/MPEL.2021.3075756
  57. S. Xu, Application of silicon-based nano materials for improving the performance of battery. Applied and Computational Engineering, 58(1), (2024) 26–30. https://doi.org/10.54254/2755-2721/58/20240682