Abstract

Cardiovascular disease (CVD) is a major contributor to death rates around the globe. Early diagnosis of cardiac illnesses is critical for efficient therapy, and an electrocardiogram (ECG) is vital for identification. Deep learning techniques have made significant advancements in the classification of ECG signals, achieving a level of accuracy comparable to that of cardiologists. In a medical situation, a cardiologist uses conventional 12-lead ECG data to determine a diagnosis. This work describes a multi-class classifier that can identify five distinct forms of cardiovascular illnesses: NORM, hypertrophy, myocardial infarction, ST-T abnormalities, and conduction disturbances. The model utilizes the abundant input from the usual 12-lead ECG data and acquires knowledge of patterns at the beat, and rhythm, and uses the dataset PTB-XL. Convolution with residual connection with Bi-LSTM performance at different filter sizes, when the filter size increases, we get a little more improvement in the model performance. The comparative study of the performance of 3 different classifiers LSTM, RNN, and Bi-LSTM, evaluates the performance of Accuracy, f1-score, recall, and precision. The performance at CRDM at filter size 11 accuracy, precision, F1-score &recall is 95.34%,91.54%,93.67% and 92.99%.

Keywords

CVD, ECG, PTB-XL dataset, Bi-LSTM, LSTM, RNN,

Downloads

Download data is not yet available.

References

  1. World Health Organization. (2023). cardiovascular Disease. World Health Organization.
  2. World Health Organization. (2023). Deaths from cardiovascular Disease. World Health Organization
  3. M. Bhatia, P. Dixit, M. Kumar, L.K. Dwivedi, Impending epidemic of cardiovascular diseases among lower socioeconomic groups in India. The Lancet Healthy Longevity, 2(6), (2021) e314-e315. https://doi.org/10.1016/S2666-7568(21)00080-5
  4. N. Sinha, T. Jangid, A.M. Joshi, S.P. Mohanty, (2022) iCardo: A Machine Learning Based Smart Healthcare Framework for Cardiovascular Disease Prediction. arXiv preprint.
  5. R.K. Tripathy, A. Bhattacharyya, R.B. Pachori, A novel approach for detection of myocardial infarction from ECG signals of multiple electrodes. IEEE Sensors Journal, 19(12), (2019) 4509-4517. https://doi.org/10.1109/JSEN.2019.2896308
  6. M.B. Abubaker, B. Babayiğit, Detection of cardiovascular diseases in ECG images using machine learning and deep learning methods. IEEE Transactions on Artificial Intelligence, 4(2), (2022) 373-382. https://doi.org/10.1109/TAI.2022.3159505
  7. N. Sinha, A.M. Joshi, (2022) Predicting the presence of left ventricular hypertrophy using este’s criteria with support vector machine. Research Square. https://doi.org/10.21203/rs.3.rs-1626968/v1
  8. N. Sinha, M.G. Kumar, A.M. Joshi, L.R. Cenkeramaddi, DASMcC: Data Augmented SMOTE Multi-class Classifier for prediction of Cardiovascular Diseases using time series features. IEEE Access, 11, (2023) 117643 – 117655. https://doi.org/10.1109/ACCESS.2023.3325705
  9. https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML
  10. M.T. García-Ordás, M. Bayón-Gutiérrez, C. Benavides, J. Aveleira-Mata, J.A. Benítez-Andrades, Heart disease risk prediction using deep learning techniques with feature augmentation. Multimedia Tools and Applications, 82(20), (2023) 31759-31773. https://doi.org/10.1007/s11042-023-14817-z
  11. P.M. Goad, J.P. Deore, (2024). Predicting and Analyzing Cardiovascular Disease through Ensemble Learning Approaches. International Research Journal of Multidisciplinary Technovation, 6(5), 153–163. https://doi.org/10.54392/irjmt24510
  12. M. Li, P.Y. Huang, X. Chang, J. Hu, Y. Yang, A. Hauptmann, Video pivoting unsupervised multi-modal machine translation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), (2022) 3918-3932. https://doi.org/10.1109/TPAMI.2022.3181116
  13. L. Zhang, X. Chang, J. Liu, M. Luo, Z. Li, L. Yao, A. Hauptmann, Tn-zstad: Transferable network for zero-shot temporal activity detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), (2022) 3848-3861. https://doi.org/10.1109/TPAMI.2022.3183586
  14. J. Gupta, (2021) The accuracy of supervised machine learning algorithms in predicting cardiovascular disease. In 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), IEEE, Indonesia. https://doi.org/10.1109/ICAICST53116.2021.9497837
  15. S. Sarah, M.K. Gourisaria, S. Khare, H. Das, (2022) Heart disease prediction using core machine learning techniques—a comparative study. In Advances in Data and Information Sciences: Proceedings of ICDIS 2021, Springer Singapore. https://doi.org/10.1007/978-981-16-5689-7_22
  16. H. Shi, H. Wang, Y. Huang, L. Zhao, C. Qin, C. Liu, A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Computer methods and programs in biomedicine, 171, (2019) 1-10. https://doi.org/10.1016/j.cmpb.2019.02.005
  17. J. Wang, An intelligent computer-aided approach for atrial fibrillation and atrial flutter signals classification using modified bidirectional LSTM network. Information Sciences, 574, (2021) 320-332. https://doi.org/10.1016/j.ins.2021.06.009
  18. H. Dang, M. Sun, G. Zhang, X. Qi, X. Zhou, Q. Chang, A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals. IEEE Access, 7, (2019) 75577-75590. https://doi.org/10.1109/ACCESS.2019.2918792
  19. Y. Jin, C. Qin, Y. Huang, W. Zhao, C. Liu, Multi-domain modeling of atrial fibrillation detection with twin attentional convolutional long short-term memory neural networks. Knowledge-Based Systems, 193, (2020) 105460. https://doi.org/10.1016/j.knosys.2019.105460
  20. S. Sadasivuni, V. Damodaran, I. Banerjee, A. Sanyal, (2022) Real-time prediction of cardiovascular diseases using reservoir-computing and fusion with electronic medical record. In 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), IEEE, Korea. https://doi.org/10.1109/AICAS54282.2022.9869980
  21. C. Guo, J. Zhang, Y. Liu, Y. Xie, Z. Han, J. Yu, Recursion enhanced random forest with an improved linear model (RERF-ILM) for heart disease detection on the internet of medical things platform. Ieee Access, 8, (2020) 59247-59256. https://doi.org/10.1109/ACCESS.2020.2981159
  22. S. Mohan, C. Thirumalai, G. Srivastava, Effective heart disease prediction using hybrid machine learning techniques. IEEE access, 7, (2019) 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707
  23. M. Obayya, J.M. Alsamri, M.A. Al-Hagery, A. Mohammed, M.A. Hamza, Automated Cardiovascular Disease Diagnosis using Honey Badger Optimization with Modified Deep Learning Model. IEEE Access, 11, (2023) 64272 – 64281. https://doi.org/10.1109/ACCESS.2023.3286661
  24. P. Ghosh, S. Azam, M. Jonkman, A. Karim, F.J.M. Shamrat, E. Ignatious, S. Shultana, A.R. Beeravolu, F. De Boer, Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques. IEEE Access, 9, (2021) 19304-19326. https://doi.org/10.1109/ACCESS.2021.3053759
  25. B. Akkaya, E. Sener, C. Gursu, (2022) A Comparative Study of Heart Disease Prediction Using Machine Learning Techniques. In 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE, Turkey. https://doi.org/10.1109/HORA55278.2022.9799978
  26. A. Nikam, S. Bhandari, A. Mhaske, S. Mantri, (2020). Cardiovascular disease prediction using machine learning models. In 2020 IEEE Pune Section International Conference (PuneCon), IEEE, India. https://doi.org/10.1109/PuneCon50868.2020.9362367
  27. M.A. Simonyan, Y.M. Ishbulatov, O.M. Posnenkova, V.A. Shvartz, A.S. Karavaev, V.V. Skazkina, V.I. Gridnev, R.V. Ukolov, A.R. Kiselev, (2021). Spectral Analysis of Photoplethysmography Signal in Patients with Cardiovascular Diseases and Healthy Subjects. In 2021 5th Scientific School Dynamics of Complex Networks and their Applications (DCNA), IEEE, Russian Federation. https://doi.org/10.1109/DCNA53427.2021.9587125
  28. X. Qian, Y. Li, X. Zhang, H. Guo, J. He, X. Wang, Y. Yan, J. Ma, R. Ma, S. Guo, A cardiovascular disease prediction model based on routine physical examination indicators using machine learning methods: a cohort study. Frontiers in cardiovascular medicine, 9, (2022) 854287. https://doi.org/10.3389/fcvm.2022.854287
  29. H. Yang, Z. Chen, H. Yang, M. Tian, Predicting Coronary Heart Disease Using an Improved LightGBM Model: Performance Analysis and Comparison. IEEE Access, 11, (2023) 23366-23380.
  30. S. Ghorashi, K. Rehman, A. Riaz, H.K. Alkahtani, A.H. Samak, I. Cherrez-Ojeda, A. Parveen, Leveraging Regression Analysis to Predict Overlapping Symptoms of Cardiovascular Diseases. IEEE Access, 11, (2023) 60254 – 60266. https://doi.org/10.1109/ACCESS.2023.3286311
  31. G. Joo, Y. Song, H. Im, J. Park, Clinical implication of machine learning in predicting the occurrence of cardiovascular disease using big data (Nationwide Cohort Data in Korea). IEEE Access, 8, (2020) 157643-157653. https://doi.org/10.1109/ACCESS.2020.3015757
  32. A. Anand, T. Kadian, M.K. Shetty, A. Gupta, Explainable AI decision model for ECG data of cardiac disorders. Biomedical Signal Processing and Control, 75, (2022) 103584. https://doi.org/10.1016/j.bspc.2022.103584
  33. G.G. Geweid, J.D. Chen, Automatic classification of atrial fibrillation from short single-lead ECG recordings using a Hybrid Approach of Dual Support Vector Machine. Expert Systems with Applications, 198, (2022) 116848. https://doi.org/10.1016/j.eswa.2022.116848
  34. P. Liu, X. Sun, Y. Han, Z. He, W. Zhang, C. Wu, Arrhythmia classification of LSTM autoencoder based on time series anomaly detection. Biomedical Signal Processing and Control, 71, (2022) 103228. https://doi.org/10.1016/j.bspc.2021.103228
  35. Y. Li, R. Qian, K. Li, Inter-patient arrhythmia classification with improved deep residual convolutional neural network. Computer Methods and Programs in Biomedicine, 214, (2022) 106582. https://doi.org/10.1016/j.cmpb.2021.106582
  36. Q.H. Nguyen, B.P. Nguyen, T.B. Nguyen, T.T. Do, J.F. Mbinta, C.R. Simpson, and Stacking segment-based CNN with SVM for recognition of atrial fibrillation from single-lead ECG recordings. Biomedical Signal Processing and Control, 68, (2021) 102672. https://doi.org/10.1016/j.bspc.2021.102672
  37. M. Wu, Y. Lu, W. Yang, S.Y. Wong, A study on arrhythmia via ECG signal classification using the convolutional neural network. Frontiers in computational neuroscience, 14, (2021) 564015. https://doi.org/10.3389/fncom.2020.564015
  38. S.L. Prasanna, Kamepalli, N. Panini Challa, Deep Bi-LSTM with Binary Harris Hawkes Algorithm-Based Heart Risk Level Prediction. SN Computer Science 5(1), (2023) 134. https://doi.org/10.1007/s42979-023-02497-3
  39. S. Nandy, M. Adhikari, V. Balasubramanian, V.G. Menon, X. Li, M. Zakarya, An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Computing and Applications, 35(20), (2023) 14723-14737. https://doi.org/10.1007/s00521-021-06124-1
  40. P. Wagner, N. Strodthoff, R. Bousseljot, W. Samek, T. Schaeffter, (2020) PTB-XL, a large publicly available electrocardiography dataset. Science Data, 7, (2020) 154. https://doi.org/10.1038/s41597-020-0495-6
  41. A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 101(23), (2000)e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215
  42. S. Śmigiel, K. Pałczyński, D. Ledziński, ECG signal classification using deep learning techniques based on the PTB-XL dataset. Entropy, 23(9), (2021) 1121. https://doi.org/10.3390/e23091121
  43. A. Alqahtani, S. Alsubai, M. Sha, L. Vilcekova, T. Javed, (2022) Cardiovascular disease detection using ensemble learning. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/5267498
  44. A. Tiwari, A. Chugh, A. Sharma, Ensemble framework for cardiovascular disease prediction. Computers in Biology and Medicine, 146, (2022) 105624. https://doi.org/10.1016/j.compbiomed.2022.105624
  45. L. Reddy, V. Talwar, S. Alle, R.S. Bapi, U.D. Priyakumar, (2021) Imle-net: An interpretable multi-level multi-channel model for ecg classification. In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, Australia. https://doi.org/10.1109/SMC52423.2021.9658706
  46. A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn, M.P. Turakhia, A.Y. Ng, Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine, 25(1), (2019) 65-69. https://doi.org/10.1038/s41591-018-0268-3
  47. R. Banerjee, A. Ghose, K. Muthana Mandana, (2020) A Hybrid CNN-LSTM Architecture for Detection of Coronary Artery Disease from ECG. 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, Glasgow, UK. https://doi.org/10.1109/IJCNN48605.2020.9207044