Abstract

Electroencephalogram (EEG) patterns depict electrical activity in the brain. They reveal insights into neurological functions, aiding in diagnosing conditions like epilepsy, sleep disorders, and brain injuries. The purpose of this research is to establish an innovative machine learning (ML)-driven recognition of EEG patterns in cognitive training. In this study, we propose an innovative Dynamic Artificial Rabbit Search-driven Advanced Bidirectional Long Short-Term Memory (DAR-ABLSTM) for robust classification of EEG patterns in cognitive training tasks. EEG was employed to investigate the impact of various forms of cognitive training on brain activity. We obtained EEG recordings from 50 healthy individuals during cognitive training and after a five-week programme. A signal processing procedure is employed to preprocess the obtained raw signal data. Our proposed model employs a novel approach stimulated by the foraging behavior of rabbits to enhance the classification of EEG patterns. We also conducted a t-test using SPSS analytical software to evaluate the pre- and post-cognitive training measures. The proposed recognition model is implemented in Python software. In the findings assessment phase, we effectively assess the performance of our proposed DAR-ABLSTM in classifying EEG patterns across multiple evaluation metrics, such as sensitivity (94.53%), accuracy (97.01%), F1-score (95.72%) and specificity (96.62%). Our experimental results demonstrate the capability and reliability of the proposed recognition in dynamic scenarios. The results of the analysis showed that both the negative and positive moods had significantly changed. The study suggests varying responses to different cognitive training methods.

Keywords

Electroencephalogram (EEG) patterns, Post-processing, Recognition Model, Dynamic Artificial Rabbit Search-driven Advanced Bidirectional Long Short-Term Memory (DAR-ABLSTM), SPSS,

Downloads

Download data is not yet available.

References

  1. C. Li, N. Bian, Z. Zhao, H. Wang, B.W. Schuller, Multi-view domain-adaptive representation learning for EEG-based emotion recognition, Information Fusion, 104, (2024) 102156. https://doi.org/10.1016/j.inffus.2023.102156
  2. H. Darwish, A.A. Malah, K.A. Jallad, N. Ghneim, (2024) ArEEG_Chars: Dataset for envisioned speech recognition using EEG for Arabic characters, arXiv preprint arXiv: 2402.15733. https://doi.org/10.48550/arXiv.2402.15733
  3. B. Chen, C.P. Chen, T. Zhang, GDDN: Graph domain disentanglement network for generalizable EEG emotion recognition, IEEE Transactions on Affective Computing, 15(3), (2024) 1739 – 1753. https://doi.org/10.1109/TAFFC.2024.3371540
  4. F.K. Bardak, M.N. Seyman, F. Temurtaş, Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals, Neural Computing and Applications, 36(16), (2024) 9189-9202. https://doi.org/10.1007/s00521-024-09573-6
  5. M.S. Al-Quraishi, W.H. Tan, I. Elamvazuthi, C.P. Ooi, N.M. Saad, M.I. Al-Hiyali, H.A. Karim, S.S.A. Ali, Cortical signals analysis to recognize intralimb mobility using modified RNN and various EEG quantities, Heliyon,10(9), (2024) e30406. https://doi.org/10.1016/j.heliyon.2024.e30406
  6. D. Li, L. Xie, Z. Wang, H. Yang, Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning, IEEE Transactions on Neural Networks and Learning Systems, 35(9), (2023) 12979 - 12992. https://doi.org/10.1109/TNNLS.2023.3265730
  7. S. Asadzadeh, T.Y. Rezaii, S. Beheshti, S. Meshgini, Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes, Cognitive Computation, 15(1) (2023) 176-189. https://doi.org/10.1007/s12559-022-10077-5
  8. D. Duan, W. Zhong, F. Hu, L. Ye, Q. Zhang, (2023) Exploring gender differences in emotion recognition with electroencephalography. In: 2023 15th International Conference on Advanced Computational Intelligence (ICACI), IEEE, and Seoul, Korea. https://doi.org/10.1109/ICACI58115.2023.10146194
  9. M. Buzzelli, S. Bianco, P. Napoletano, Unified framework for identity and imagined action recognition from EEG patterns, IEEE Transactions on Human-Machine Systems, 53(3), (2023) 529 - 537. https://doi.org/10.1109/THMS.2023.3267898
  10. S. Liu, Z. Wang, Y. An, J. Zhao, Y. Zhao, Y.D. Zhang, EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowledge-Based Systems, 265, (2023) 110372. https://doi.org/10.1016/j.knosys.2023.110372
  11. R. Hassan, S. Hasan, M.J. Hasan, M.R. Jamader, D. Eisenberg, T. Pias, (2020) Human attention recognition with machine learning from brain-EEG signals, in: 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS),IEEE, Tainan. https://doi.org/10.1109/ECBIOS50299.2020.9203672
  12. Y.Gao, X. Fu, T. Ouyang, Y. Wang, EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition. IEEE Signal Processing Letters, 29, (2022) 1574-1578. https://doi.org/10.1109/LSP.2022.3179946
  13. A. Roshdy, A. Karar, S.A. Kork, T. Beyrouthy, A. Nait-ali, Advancements in EEG emotion recognition: leveraging multi-modal database integration. Applied Sciences, 14(6), (2024) 2487. https://doi.org/10.3390/app14062487
  14. X. Gong, C.P. Chen, B. Hu, T. Zhang, CiABL: completeness-induced adaptative broad learning for cross-subject emotion recognition with EEG and eye movement signals, IEEE Transactions on Affective Computing, 15(4), (2024) 1970 - 1984. https://doi.org/10.1109/TAFFC.2024.3392791
  15. M. Aslan, M. Baykara, T.B. Alakuş, Analysis of brain areas in emotion recognition from EEG signals with deep learning methods. Multimedia Tools and Applications, 83(11), (2024) 32423-32452. https://doi.org/10.1007/s11042-023-16696-w
  16. S.K. Jha, S. Suvvari, M. Kumar, Emotion recognition from electroencephalogram (EEG) signals using a multiple column convolutional neural network model. SN Computer Science, 5(2), (2024) 213. https://doi.org/10.1007/s42979-023-02543-0
  17. J. Chen, H. Wang, E. He, A transfer learning-based CNN deep learning model for unfavorable driving state recognition, Cognitive Computation, 16(1), (2024) 121-130. https://doi.org/10.1007/s12559-023-10196-7
  18. C. Li, P. Li, Y. Zhang, N. Li, Y. Si, F. Li, Z. Cao, H. Chen, B. Chen, D. Yao, P. Xu, Effective emotion recognition by learning discriminative graph topologies in EEG brain networks, IEEE Transactions on Neural Networks and Learning Systems, 35(8), (2023) 10258-10272. https://doi.org/10.1109/TNNLS.2023.3238519
  19. M. Jiménez-Guarneros, P. Gómez-Gil, Custom domain adaptation: a new method for cross subject, EEG-based cognitive load recognition. IEEE Signal Processing Letters, 27, (2020) 750-754. https://doi.org/10.1109/LSP.2020.2989663
  20. Y. Ding, N. Robinson, S. Zhang, Q. Zeng, C. Guan, Tsception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition. IEEE Transactions on Affective Computing, 14(3), (2022) 2238 - 2250. https://doi.org/10.1109/TAFFC.2022.3169001
  21. J. Xu, H. Zheng, J. Wang, D. Li, X. Fang, Recognition of EEG signal motor imagery intention based on deep multi-view feature learning, Sensors, 20(12), (2020) 3496. https://doi.org/10.3390/s20123496
  22. B. Chakravarthi, S.C. Ng, M.R. Ezilarasan, M.F. Leung, EEG-based emotion recognition using hybrid CNN and LSTM classification. Frontiers in Computational Neuroscience, 16, (2022) 1019776. https://doi.org/10.3389/fncom.2022.1019776
  23. K. Singh, S. Singh, J. Malhotra, Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), (2021) 167-184. https://doi.org/10.1177/0954411920966937
  24. R.K. Kanna, S.V. Athawale, M.Y. Naniwadekar, C.S. Choudhari, N.R. Talhar, S. Dhengre, Anxiety controlling application using EEG neurofeedback system, EAI Endorsed Transactions on Pervasive Health and Technology, 10, (2024). https://doi.org/10.4108/eetpht.10.5432
  25. M.U. Iqbal, M.A. Shahab, M. Choudhary, B. Srinivasan, R. Srinivasan, Electroencephalography (EEG) based cognitive measures for evaluating the effectiveness of operator training. Process Safety and Environmental Protection, 150, (2021) 51-67. https://doi.org/10.1016/j.psep.2021.03.050
  26. J. Ansado, C. Chasen, S. Bouchard, G. Northoff, How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training, Neuroscience & Biobehavioral Reviews, 120, (2021) 583-594. https://doi.org/10.1016/j.neubiorev.2020.05.018
  27. W. Tan, Y. Xu, P. Liu, C. Liu, Y. Li, Y. Du, C. Chen, Y. Wang, Y. Zhang, A method of VR-EEG scene cognitive rehabilitation training, Health Information Science and Systems, 9(1), (2021) 4. https://doi.org/10.1007/s13755-020-00132-6
  28. X. Zhao, C. Dang, J.H. Maes, Effects of working memory training on EEG, cognitive performance, and self-report indices potentially relevant for social anxiety. Biological Psychology, 150, (2020) 107840. https://doi.org/10.1016/j.biopsycho.2019.107840
  29. J.C. Da Silva, M.L. De Souza, Neurofeedback training for cognitive performance improvement in healthy subjects: a systematic review. Psychology & Neuroscience, 14(3), (2021) 262. https://psycnet.apa.org/doi/10.1037/pne0000261
  30. S. Rajabi, A. Pakize, N. Moradi, Effect of combined neurofeedback and game-based cognitive training on the treatment of ADHD: a randomized controlled study. Applied Neuropsychology: Child, 9(3), (2020) 193-205. https://doi.org/10.1080/21622965.2018.1556101
  31. S.H.J. Teo, X.W.W. Poh, T.S. Lee, C. Guan, Y.B. Cheung, D.S.S. Fung, H.H. Zhang, Z.Y. Chin, C.C. Wang, M. Sung, T.J. Goh, Brain-computer interface based attention and social cognition training programme for children with ASD and co-occurring ADHD: a feasibility trial. Research in Autism Spectrum Disorders, 89, (2021) 101882. https://doi.org/10.1016/j.rasd.2021.101882
  32. X. Qu, Q. Mei, P. Liu, T. Hickey, (2020) Using EEG to distinguish between writing and typing for the same cognitive task, in: Brain Function Assessment in Learning: Second International Conference, Springer, Heraklion, Greece, 66-74. https://doi.org/10.1007/978-3-030-60735-7_7
  33. J.L. Molina, M.L. Thomas, Y.B. Joshi, W.C. Hochberger, D. Koshiyama, J.A. Nungaray, L. Cardoso, J. Sprock, D.L. Braff, N.R. Swerdlow, G.A. Light, Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Translational Psychiatry, 10(1), (2020) 405. https://doi.org/10.1038/s41398-020-01089-6
  34. J. Jeon, H. Cai, Multi-class classification of construction hazards via cognitive states assessment using wearable EEG. Advanced Engineering Informatics, 53, (2022) 101646. https://doi.org/10.1016/j.aei.2022.101646
  35. J.G. Cruz-Garza, M. Darfler, J.D. Rounds, E. Gao, S. Kalantari, EEG-based investigation of the impact of room size and window placement on cognitive performance, Journal of Building Engineering, 53, (2022) 104540. https://doi.org/10.1016/j.jobe.2022.104540
  36. L.R. Trambaiolli, R. Cassani, D.M. Mehler, T.H. Falk, Neurofeedback and the aging brain: a systematic review of training protocols for dementia and mild cognitive impairment. Frontiers in Aging Neuroscience, 13, (2021) 682683. https://doi.org/10.3389/fnagi.2021.682683
  37. L.C. Gómez, R. Hervás, I. Gonzalez, V. Villarreal, Studying the generalisability of cognitive load measured with EEG. Biomedical Signal Processing and Control, 70, (2021) 103032. https://doi.org/10.1016/j.bspc.2021.103032
  38. Y. Zhou, Z. Xu, Y. Niu, P. Wang, X. Wen, X. Wu, D. Zhang, Cross-task cognitive workload recognition based on EEG and domain adaptation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, (2022) 50-60. https://doi.org/10.1109/TNSRE.2022.3140456
  39. P. Israsena, S. Jirayucharoensak, S. Hemrungrojn, S. Pan-Ngum, Brain exercising games with consumer-grade single-channel electroencephalogram neurofeedback: pre-post intervention study. JMIR Serious Games, 9(2), (2021) e26872. https://doi.org/10.2196/26872
  40. I. Merlet, M. Guillery, L. Weyl, M. Hammal, M. Maliia, S. Maliia, A. Biraben, C. Ricordeau, D. Drapier, A. Nica, EEG changes induced by meditative practices: state and trait effects in healthy subjects and in patients with epilepsy. Revue Neurologique, 108(4), (2024) 326-347. https://doi.org/10.1016/j.neurol.2024.02.387
  41. S. Russo, I.E. Tibermacine, A. Tibermacine, D. Chebana, A. Nahili, J. Starczewscki, C. Napoli, Analyzing EEG patterns in young adults exposed to different acrophobia levels: a VR study, Frontiers in Human Neuroscience, 18, (2024) 1348154. https://doi.org/10.3389/fnhum.2024.1348154
  42. J. Gomez Romero-Borquez, C. Del-Valle-Soto, J.A. Del-Puerto-Flores, R.A. Briseño, J. Varela-Aldás, Neurogaming in virtual reality: a review of video game genres and cognitive impact, Electronics, 13(9), (2024) 1683. https://doi.org/10.3390/electronics13091683
  43. S.A. Asha, C. Sudalaimani, P. Devanand, G. Alexander, A.M. Lathikakumari, S.V. Thomas, R.N. Menon, Analysis of EEG microstates as biomarkers in neuropsychological processes – review, Computers in Biology and Medicine, 173, (2024) 108266. https://doi.org/10.1016/j.compbiomed.2024.108266
  44. Y. Zhang, L. Sun, D. Gupta, X. Ning, P. Tiwari, DCNet: a self-supervised EEG classification framework for improving cognitive computing-enabled smart healthcare. IEEE Journal of Biomedical and Health Informatics, 28(8), (2024) 4494-4502. https://doi.org/10.1109/JBHI.2024.3357168
  45. S. Chattopadhyay, RECSAE: An interactive model of relevance cognitive load, spatial memory, ADHD and EEG for special educators and mental health professionals. Diagnostics and Therapeutics, 3(1), (2024) 1-8. https://doi.org/10.55976/dt.3202412081-8
  46. J. Gomez Romero-Borquez, C. Del-Valle-Soto, J.A. Del-Puerto-Flores, F.R. Castillo-Soria, F.M. Maciel-Barboza, Implications for serious game design: quantification of cognitive stimulation in virtual reality puzzle games through MSC and SpEn EEG analysis. Electronics, 13(11), (2024) 2017. https://doi.org/10.3390/electronics13112017
  47. M. Pušica, A. Kartali, L. Bojović, I. Gligorijević, J. Jovanović, M.C. Leva, B. Mijović, Mental workload classification and tasks detection in multitasking: deep learning insights from EEG study. Brain Sciences, 14(2), (2024) 149. https://doi.org/10.3390/brainsci14020149
  48. J. Sun, Y. Sun, A. Shen, Y. Li, X. Gao, B. Lu, An ensemble learning model for continuous cognition assessment based on resting-state EEG, npj Aging, 10(1), (2024) 1. https://doi.org/10.1038/s41514-023-00129-x
  49. T. Qin, W. Fias, N. Van de Weghe, H. Huang, Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Science, 38(3), (2024) 550-576. https://doi.org/10.1080/13658816.2024.2309188