Abstract
Electroencephalogram (EEG) patterns depict electrical activity in the brain. They reveal insights into neurological functions, aiding in diagnosing conditions like epilepsy, sleep disorders, and brain injuries. The purpose of this research is to establish an innovative machine learning (ML)-driven recognition of EEG patterns in cognitive training. In this study, we propose an innovative Dynamic Artificial Rabbit Search-driven Advanced Bidirectional Long Short-Term Memory (DAR-ABLSTM) for robust classification of EEG patterns in cognitive training tasks. EEG was employed to investigate the impact of various forms of cognitive training on brain activity. We obtained EEG recordings from 50 healthy individuals during cognitive training and after a five-week programme. A signal processing procedure is employed to preprocess the obtained raw signal data. Our proposed model employs a novel approach stimulated by the foraging behavior of rabbits to enhance the classification of EEG patterns. We also conducted a t-test using SPSS analytical software to evaluate the pre- and post-cognitive training measures. The proposed recognition model is implemented in Python software. In the findings assessment phase, we effectively assess the performance of our proposed DAR-ABLSTM in classifying EEG patterns across multiple evaluation metrics, such as sensitivity (94.53%), accuracy (97.01%), F1-score (95.72%) and specificity (96.62%). Our experimental results demonstrate the capability and reliability of the proposed recognition in dynamic scenarios. The results of the analysis showed that both the negative and positive moods had significantly changed. The study suggests varying responses to different cognitive training methods.
Keywords
Electroencephalogram (EEG) patterns, Post-processing, Recognition Model, Dynamic Artificial Rabbit Search-driven Advanced Bidirectional Long Short-Term Memory (DAR-ABLSTM), SPSS,Downloads
References
- C. Li, N. Bian, Z. Zhao, H. Wang, B.W. Schuller, Multi-view domain-adaptive representation learning for EEG-based emotion recognition, Information Fusion, 104, (2024) 102156. https://doi.org/10.1016/j.inffus.2023.102156
- H. Darwish, A.A. Malah, K.A. Jallad, N. Ghneim, (2024) ArEEG_Chars: Dataset for envisioned speech recognition using EEG for Arabic characters, arXiv preprint arXiv: 2402.15733. https://doi.org/10.48550/arXiv.2402.15733
- B. Chen, C.P. Chen, T. Zhang, GDDN: Graph domain disentanglement network for generalizable EEG emotion recognition, IEEE Transactions on Affective Computing, 15(3), (2024) 1739 – 1753. https://doi.org/10.1109/TAFFC.2024.3371540
- F.K. Bardak, M.N. Seyman, F. Temurtaş, Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals, Neural Computing and Applications, 36(16), (2024) 9189-9202. https://doi.org/10.1007/s00521-024-09573-6
- M.S. Al-Quraishi, W.H. Tan, I. Elamvazuthi, C.P. Ooi, N.M. Saad, M.I. Al-Hiyali, H.A. Karim, S.S.A. Ali, Cortical signals analysis to recognize intralimb mobility using modified RNN and various EEG quantities, Heliyon,10(9), (2024) e30406. https://doi.org/10.1016/j.heliyon.2024.e30406
- D. Li, L. Xie, Z. Wang, H. Yang, Brain emotion perception inspired EEG emotion recognition with deep reinforcement learning, IEEE Transactions on Neural Networks and Learning Systems, 35(9), (2023) 12979 - 12992. https://doi.org/10.1109/TNNLS.2023.3265730
- S. Asadzadeh, T.Y. Rezaii, S. Beheshti, S. Meshgini, Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes, Cognitive Computation, 15(1) (2023) 176-189. https://doi.org/10.1007/s12559-022-10077-5
- D. Duan, W. Zhong, F. Hu, L. Ye, Q. Zhang, (2023) Exploring gender differences in emotion recognition with electroencephalography. In: 2023 15th International Conference on Advanced Computational Intelligence (ICACI), IEEE, and Seoul, Korea. https://doi.org/10.1109/ICACI58115.2023.10146194
- M. Buzzelli, S. Bianco, P. Napoletano, Unified framework for identity and imagined action recognition from EEG patterns, IEEE Transactions on Human-Machine Systems, 53(3), (2023) 529 - 537. https://doi.org/10.1109/THMS.2023.3267898
- S. Liu, Z. Wang, Y. An, J. Zhao, Y. Zhao, Y.D. Zhang, EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network. Knowledge-Based Systems, 265, (2023) 110372. https://doi.org/10.1016/j.knosys.2023.110372
- R. Hassan, S. Hasan, M.J. Hasan, M.R. Jamader, D. Eisenberg, T. Pias, (2020) Human attention recognition with machine learning from brain-EEG signals, in: 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS),IEEE, Tainan. https://doi.org/10.1109/ECBIOS50299.2020.9203672
- Y.Gao, X. Fu, T. Ouyang, Y. Wang, EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition. IEEE Signal Processing Letters, 29, (2022) 1574-1578. https://doi.org/10.1109/LSP.2022.3179946
- A. Roshdy, A. Karar, S.A. Kork, T. Beyrouthy, A. Nait-ali, Advancements in EEG emotion recognition: leveraging multi-modal database integration. Applied Sciences, 14(6), (2024) 2487. https://doi.org/10.3390/app14062487
- X. Gong, C.P. Chen, B. Hu, T. Zhang, CiABL: completeness-induced adaptative broad learning for cross-subject emotion recognition with EEG and eye movement signals, IEEE Transactions on Affective Computing, 15(4), (2024) 1970 - 1984. https://doi.org/10.1109/TAFFC.2024.3392791
- M. Aslan, M. Baykara, T.B. Alakuş, Analysis of brain areas in emotion recognition from EEG signals with deep learning methods. Multimedia Tools and Applications, 83(11), (2024) 32423-32452. https://doi.org/10.1007/s11042-023-16696-w
- S.K. Jha, S. Suvvari, M. Kumar, Emotion recognition from electroencephalogram (EEG) signals using a multiple column convolutional neural network model. SN Computer Science, 5(2), (2024) 213. https://doi.org/10.1007/s42979-023-02543-0
- J. Chen, H. Wang, E. He, A transfer learning-based CNN deep learning model for unfavorable driving state recognition, Cognitive Computation, 16(1), (2024) 121-130. https://doi.org/10.1007/s12559-023-10196-7
- C. Li, P. Li, Y. Zhang, N. Li, Y. Si, F. Li, Z. Cao, H. Chen, B. Chen, D. Yao, P. Xu, Effective emotion recognition by learning discriminative graph topologies in EEG brain networks, IEEE Transactions on Neural Networks and Learning Systems, 35(8), (2023) 10258-10272. https://doi.org/10.1109/TNNLS.2023.3238519
- M. Jiménez-Guarneros, P. Gómez-Gil, Custom domain adaptation: a new method for cross subject, EEG-based cognitive load recognition. IEEE Signal Processing Letters, 27, (2020) 750-754. https://doi.org/10.1109/LSP.2020.2989663
- Y. Ding, N. Robinson, S. Zhang, Q. Zeng, C. Guan, Tsception: capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition. IEEE Transactions on Affective Computing, 14(3), (2022) 2238 - 2250. https://doi.org/10.1109/TAFFC.2022.3169001
- J. Xu, H. Zheng, J. Wang, D. Li, X. Fang, Recognition of EEG signal motor imagery intention based on deep multi-view feature learning, Sensors, 20(12), (2020) 3496. https://doi.org/10.3390/s20123496
- B. Chakravarthi, S.C. Ng, M.R. Ezilarasan, M.F. Leung, EEG-based emotion recognition using hybrid CNN and LSTM classification. Frontiers in Computational Neuroscience, 16, (2022) 1019776. https://doi.org/10.3389/fncom.2022.1019776
- K. Singh, S. Singh, J. Malhotra, Spectral features based convolutional neural network for accurate and prompt identification of schizophrenic patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(2), (2021) 167-184. https://doi.org/10.1177/0954411920966937
- R.K. Kanna, S.V. Athawale, M.Y. Naniwadekar, C.S. Choudhari, N.R. Talhar, S. Dhengre, Anxiety controlling application using EEG neurofeedback system, EAI Endorsed Transactions on Pervasive Health and Technology, 10, (2024). https://doi.org/10.4108/eetpht.10.5432
- M.U. Iqbal, M.A. Shahab, M. Choudhary, B. Srinivasan, R. Srinivasan, Electroencephalography (EEG) based cognitive measures for evaluating the effectiveness of operator training. Process Safety and Environmental Protection, 150, (2021) 51-67. https://doi.org/10.1016/j.psep.2021.03.050
- J. Ansado, C. Chasen, S. Bouchard, G. Northoff, How brain imaging provides predictive biomarkers for therapeutic success in the context of virtual reality cognitive training, Neuroscience & Biobehavioral Reviews, 120, (2021) 583-594. https://doi.org/10.1016/j.neubiorev.2020.05.018
- W. Tan, Y. Xu, P. Liu, C. Liu, Y. Li, Y. Du, C. Chen, Y. Wang, Y. Zhang, A method of VR-EEG scene cognitive rehabilitation training, Health Information Science and Systems, 9(1), (2021) 4. https://doi.org/10.1007/s13755-020-00132-6
- X. Zhao, C. Dang, J.H. Maes, Effects of working memory training on EEG, cognitive performance, and self-report indices potentially relevant for social anxiety. Biological Psychology, 150, (2020) 107840. https://doi.org/10.1016/j.biopsycho.2019.107840
- J.C. Da Silva, M.L. De Souza, Neurofeedback training for cognitive performance improvement in healthy subjects: a systematic review. Psychology & Neuroscience, 14(3), (2021) 262. https://psycnet.apa.org/doi/10.1037/pne0000261
- S. Rajabi, A. Pakize, N. Moradi, Effect of combined neurofeedback and game-based cognitive training on the treatment of ADHD: a randomized controlled study. Applied Neuropsychology: Child, 9(3), (2020) 193-205. https://doi.org/10.1080/21622965.2018.1556101
- S.H.J. Teo, X.W.W. Poh, T.S. Lee, C. Guan, Y.B. Cheung, D.S.S. Fung, H.H. Zhang, Z.Y. Chin, C.C. Wang, M. Sung, T.J. Goh, Brain-computer interface based attention and social cognition training programme for children with ASD and co-occurring ADHD: a feasibility trial. Research in Autism Spectrum Disorders, 89, (2021) 101882. https://doi.org/10.1016/j.rasd.2021.101882
- X. Qu, Q. Mei, P. Liu, T. Hickey, (2020) Using EEG to distinguish between writing and typing for the same cognitive task, in: Brain Function Assessment in Learning: Second International Conference, Springer, Heraklion, Greece, 66-74. https://doi.org/10.1007/978-3-030-60735-7_7
- J.L. Molina, M.L. Thomas, Y.B. Joshi, W.C. Hochberger, D. Koshiyama, J.A. Nungaray, L. Cardoso, J. Sprock, D.L. Braff, N.R. Swerdlow, G.A. Light, Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Translational Psychiatry, 10(1), (2020) 405. https://doi.org/10.1038/s41398-020-01089-6
- J. Jeon, H. Cai, Multi-class classification of construction hazards via cognitive states assessment using wearable EEG. Advanced Engineering Informatics, 53, (2022) 101646. https://doi.org/10.1016/j.aei.2022.101646
- J.G. Cruz-Garza, M. Darfler, J.D. Rounds, E. Gao, S. Kalantari, EEG-based investigation of the impact of room size and window placement on cognitive performance, Journal of Building Engineering, 53, (2022) 104540. https://doi.org/10.1016/j.jobe.2022.104540
- L.R. Trambaiolli, R. Cassani, D.M. Mehler, T.H. Falk, Neurofeedback and the aging brain: a systematic review of training protocols for dementia and mild cognitive impairment. Frontiers in Aging Neuroscience, 13, (2021) 682683. https://doi.org/10.3389/fnagi.2021.682683
- L.C. Gómez, R. Hervás, I. Gonzalez, V. Villarreal, Studying the generalisability of cognitive load measured with EEG. Biomedical Signal Processing and Control, 70, (2021) 103032. https://doi.org/10.1016/j.bspc.2021.103032
- Y. Zhou, Z. Xu, Y. Niu, P. Wang, X. Wen, X. Wu, D. Zhang, Cross-task cognitive workload recognition based on EEG and domain adaptation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, (2022) 50-60. https://doi.org/10.1109/TNSRE.2022.3140456
- P. Israsena, S. Jirayucharoensak, S. Hemrungrojn, S. Pan-Ngum, Brain exercising games with consumer-grade single-channel electroencephalogram neurofeedback: pre-post intervention study. JMIR Serious Games, 9(2), (2021) e26872. https://doi.org/10.2196/26872
- I. Merlet, M. Guillery, L. Weyl, M. Hammal, M. Maliia, S. Maliia, A. Biraben, C. Ricordeau, D. Drapier, A. Nica, EEG changes induced by meditative practices: state and trait effects in healthy subjects and in patients with epilepsy. Revue Neurologique, 108(4), (2024) 326-347. https://doi.org/10.1016/j.neurol.2024.02.387
- S. Russo, I.E. Tibermacine, A. Tibermacine, D. Chebana, A. Nahili, J. Starczewscki, C. Napoli, Analyzing EEG patterns in young adults exposed to different acrophobia levels: a VR study, Frontiers in Human Neuroscience, 18, (2024) 1348154. https://doi.org/10.3389/fnhum.2024.1348154
- J. Gomez Romero-Borquez, C. Del-Valle-Soto, J.A. Del-Puerto-Flores, R.A. Briseño, J. Varela-Aldás, Neurogaming in virtual reality: a review of video game genres and cognitive impact, Electronics, 13(9), (2024) 1683. https://doi.org/10.3390/electronics13091683
- S.A. Asha, C. Sudalaimani, P. Devanand, G. Alexander, A.M. Lathikakumari, S.V. Thomas, R.N. Menon, Analysis of EEG microstates as biomarkers in neuropsychological processes – review, Computers in Biology and Medicine, 173, (2024) 108266. https://doi.org/10.1016/j.compbiomed.2024.108266
- Y. Zhang, L. Sun, D. Gupta, X. Ning, P. Tiwari, DCNet: a self-supervised EEG classification framework for improving cognitive computing-enabled smart healthcare. IEEE Journal of Biomedical and Health Informatics, 28(8), (2024) 4494-4502. https://doi.org/10.1109/JBHI.2024.3357168
- S. Chattopadhyay, RECSAE: An interactive model of relevance cognitive load, spatial memory, ADHD and EEG for special educators and mental health professionals. Diagnostics and Therapeutics, 3(1), (2024) 1-8. https://doi.org/10.55976/dt.3202412081-8
- J. Gomez Romero-Borquez, C. Del-Valle-Soto, J.A. Del-Puerto-Flores, F.R. Castillo-Soria, F.M. Maciel-Barboza, Implications for serious game design: quantification of cognitive stimulation in virtual reality puzzle games through MSC and SpEn EEG analysis. Electronics, 13(11), (2024) 2017. https://doi.org/10.3390/electronics13112017
- M. Pušica, A. Kartali, L. Bojović, I. Gligorijević, J. Jovanović, M.C. Leva, B. Mijović, Mental workload classification and tasks detection in multitasking: deep learning insights from EEG study. Brain Sciences, 14(2), (2024) 149. https://doi.org/10.3390/brainsci14020149
- J. Sun, Y. Sun, A. Shen, Y. Li, X. Gao, B. Lu, An ensemble learning model for continuous cognition assessment based on resting-state EEG, npj Aging, 10(1), (2024) 1. https://doi.org/10.1038/s41514-023-00129-x
- T. Qin, W. Fias, N. Van de Weghe, H. Huang, Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Science, 38(3), (2024) 550-576. https://doi.org/10.1080/13658816.2024.2309188
Articles
