Abstract

Software-defined network offers a programmable networking environment that redefines the management of conventional networking and can provide potential solutions for their well-known challenges. In SDN circumstances, energy becomes a major threatening factor that affects both the reliability of the network and the sustainability of its connections. Energy depletion in SDN is still a major concern considering the ever-changing network constraints and rapid growth in the number of networking devices. This research article introduces a novel energy-efficient branch-and-bound optimization (EE-BBO) algorithm, designed for large-scale software-defined networks to overcome the challenges faced by existing approaches. The objective of the EE-BBO algorithm is to minimize the energy consumption across the SDN networks and improve the network performance. The proposed algorithm computes the lower bounds for prioritizing nodes, classifies them based on their probable, and intelligently forwards packets to choose the most energy-efficient route. The algorithm is implemented on Mininet, using Floodlight as the SDN controller and OpenFlow as the communication protocol. The results of simulations showed that the proposed EE-BBO algorithm outperforms the current benchmarked methods in terms of energy consumption by 9-19%, packet loss by 15-28%, and enhancing network lifetime by 14-25%.

Keywords

Software-Defined Network, Energy, Branch and Bound, Optimization, Network Lifetime,

Downloads

Download data is not yet available.

References

  1. S. Sharma, R.K. Bansal, S. Bansal, Issues and challenges in wireless sensor networks. in Proceedings - 2013 International Conference on Machine Intelligence Research and Advancement, IEEE, India. https://doi.org/10.1109/ICMIRA.2013.18
  2. D. Salman and Q. Yas, Challenges and Issues for Wireless Sensor Networks: A Survey, Journal of Global Scientific Research, 6 (2020) 1079-1097.
  3. B.A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, T. Turletti, A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Communications Surveys and Tutorials, 16(3), (2014) 1617–1634. https://doi.org/10.1109/SURV.2014.012214.00180
  4. D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky, S. Uhlig, Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), (2015) 14–76. https://doi.org/10.1109/JPROC.2014.2371999
  5. Y. Gong, W. Huang, W. Wang, Y. Lei, A survey on software defined networking and its applications. Frontiers of Computer Science, 9, (2015) 827–845. https://doi.org/10.1007/s11704-015-3448-z
  6. J. Jiang, (2021) SDN Technology Analysis and Application Research. 7th Annual International Conference on Network and Information Systems for Computers (ICNISC), IEEE, China. https://doi.org/10.1109/ICNISC54316.2021.00014
  7. W. Xia, Y. Wen, C. H. Foh, D. Niyato, H. Xie, A Survey on Software-Defined Networking. IEEE Communications Surveys & Tutorials, 17(1), (2015) 27 – 51. https://doi.org/10.1109/COMST.2014.2330903
  8. S. Saraswat, V. Agarwal, H.P. Gupta, R. Mishra, A. Gupta, T. Dutta, Challenges and solutions in Software Defined Networking: A survey. Journal of Network and Computer Applications, 141, (2019) 23–58. https://doi.org/10.1016/j.jnca.2019.04.020
  9. S. Xu, X. W. Wang, M. Huang, Software-Defined Next-Generation Satellite Networks: Architecture, Challenges, and Solutions. IEEE Access, 6, (2018) 4027–4041. https://doi.org/10.1109/ACCESS.2018.2793237
  10. S. Rout, K. S. Sahoo, S.S. Patra, B. Sahoo, D. Puthal, Energy Efficiency in Software Defined Networking: A Survey. SN Computer Science, 2(4), (2021) 308. https://doi.org/10.1007/s42979-021-00659-9
  11. A.P. Patil, L.C.M. Hurali, Analysis of routing protocols for software-defined vehicular ad hoc networks. International Journal of Networking and Virtual Organisations, 24(2), (2021) 161-181. https://doi.org/10.1504/IJNVO.2021.114731
  12. M.F. Tuysuz, Z.K. Ankarali, D. Gözüpek, A survey on energy efficiency in software defined networks. Computer Networks, 113, (2017) 188-204. https://doi.org/10.1016/j.comnet.2016.12.012
  13. C. Shivakeshi, B. Sreepathi, A Review on Efficient Energy Consumption in Software-Defined Networking Using Routing Aware Protocols., 10(5), (2023) 478-490. https://doi.org/10.15379/ijmst.v10i5.2532
  14. A. Iqbal, U. Javed, S. Saleh, J. Kim, J. S. Alowibdi, bM. U. Ilyas, Analytical Modeling of End-to-End Delay in OpenFlow Based Networks. IEEE Access, 5, (2017) 6859–6871. https://doi.org/10.1109/ACCESS.2016.2636247
  15. N. Huin, M. Rifai, F. Giroire, D. Lopez Pacheco, G. Urvoy-Keller, J. Moulierac, Bringing Energy Aware Routing Closer to Reality with SDN Hybrid Networks. IEEE Transactions on Green Communications and Networking, 2(4), (2018) 1128–1139. https://doi.org/10.1109/TGCN.2018.2842123
  16. S. Vijaygokul, J. Dani Regan Vivek, B. Naresh Kumaar, N. Vignesh, Reduction of table flow occupancy and packet loss detection in SDN switch. Journal of Physics: Conference Series, Institute of Physics Publishing, 1362(1), (2019) 012051. https://doi.org/10.1088/1742-6596/1362/1/012051
  17. B.R. Al-Kaseem, Y. Al-Dunainawi, H.S. Al-Raweshidy, End-to-end delay enhancement in 6LoWPAN testbed using programmable network concepts. IEEE Internet of Things Journal, 6(2), (2019) 3070–3086. https://doi.org/10.1109/JIOT.2018.2879111
  18. T. Zhang, B. Liu, Exposing End-to-End Delay in Software-Defined Networking. International Journal of Reconfigurable Computing, (2019)(1), (2019) 7363901. https://doi.org/10.1155/2019/7363901
  19. L. El-Garoui, S. Pierre, S. Chamberland, A new sdn-based routing protocol for improving delay in smart city environments. Smart Cities, 3(3), (2020) 1004–1021. https://doi.org/10.3390/smartcities3030050
  20. M. Priyadarsini, S. Kumar, P. Bera, M.A. Rahman, An energy-efficient load distribution framework for SDN controllers. Computing, 102(9), (2020) 2073–2098. https://doi.org/10.1007/s00607-019-00751-2
  21. S. Torkzadeh, H. Soltanizadeh, A.A. Orouji, Energy-aware routing considering load balancing for SDN: a minimum graph-based Ant Colony Optimization. Cluster Computing, 24(3), (2021) 2293–2312. https://doi.org/10.1007/s10586-021-03263-x
  22. Y. Zhao, X. Wang, Q. He, B. Yi, M. Huang, W. Cheng, Power-Efficient Software-Defined Data Center Network. IEEE Internet of Things Journal, 8(12), (2021) 10018–10033. https://doi.org/10.1109/JIOT.2020.3048524
  23. A. Akbar, M. Ibrar, M. A. Jan, A. K. Bashir, L. Wang, SDN-Enabled Adaptive and Reliable Communication in IoT-Fog Environment Using Machine Learning and Multiobjective Optimization. IEEE Internet of Things Journal, 8(5), (2021) 3057–3065. https://doi.org/10.1109/JIOT.2020.3038768
  24. N. Saha, S. Bera, S. Misra, Sway: Traffic-Aware QoS Routing in Software-Defined IoT. IEEE Transactions on Emerging Topics in Computing, 9(1), (2021) 390–401. https://doi.org/10.1109/TETC.2018.2847296
  25. Y. Wang, H. An, J. Ba, P. Yu, Y. Feng, Z. Wei, M. Kadoch, M. Cheriet, Energy-efficient method based on dynamic topology switching and reliability in SDNs. IEEE Transactions on Sustainable Computing, 7(2), (2021) 427-440. https://doi.org/10.1109/TSUSC.2021.3116325
  26. V.K.A. Reddy, R.B.K. Nagappasetty, Leveraging Software-Defined Networks for Load Balancing in Data Centre Networks using Linear Programming. International Journal of Computing, 22(3), (2023) 404–411. https://doi.org/10.47839/ijc.22.3.3237
  27. J. Galán-Jiménez, M. Polverini, F.G. Lavacca, J.L. Herrera, J. Berrocal, Joint energy efficiency and load balancing optimization in hybrid IP/SDN networks. Annales des Telecommunications/Annals of Telecommunications, 78(1–2), (2023) 13–31. https://doi.org/10.1007/s12243-022-00921-y
  28. R.F. Ghani, L. Al-Jobouri, Packet Loss Optimization in Router Forwarding Tasks Based on the Particle Swarm Algorithm. Electronics, 12(2), (2023) 462. https://doi.org/10.3390/electronics12020462
  29. M. Forghani, M. Soltanaghaei, F. Zamani Boroujeni, Dynamic optimization scheme for load balancing and energy efficiency in software-defined networks utilizing the krill herd meta-heuristic algorithm. Computers and Electrical Engineering, 114, (2024) 109057. https://doi.org/10.1016/j.compeleceng.2023.109057
  30. K. Deo, K. Chaudhary, M. Assaf, Adaptive quality of service for packet loss reduction using OpenFlow meters. PeerJ Computer Science, 10, (2024) e1848. https://doi.org/10.7717/peerj-cs.1848
  31. T.F. Oliveira, S. Xavier-De-souza, L.F. Silveira, Improving energy efficiency on SDN control-plane using multi-core controllers. Energies (Basel), 14(11), (2021) 3161. https://doi.org/10.3390/en14113161
  32. A. Nazari, F. Tavassolian, M. Abbasi, R. Mohammadi, P. Yaryab, An Intelligent SDN-Based Clustering Approach for Optimizing IoT Power Consumption in Smart Homes. Wireless Communications and Mobile Computing, 2022(1), (2022) 8783380. https://doi.org/10.1155/2022/8783380
  33. R. Mohammadi, S. Akleylek, A. Ghaffari, SDN-IoT: SDN-based efficient clustering scheme for IoT using improved Sailfish optimization algorithm. PeerJ Computer Science, 9, (2023) e1424. https://doi.org/10.7717/peerj-cs.1424
  34. F. Keti, S. Askar, (2015) Emulation of Software Defined Networks Using Mininet in Different Simulation Environments. in Proceedings - International Conference on Intelligent Systems, Modelling and Simulation, IEEE, Malaysia. https://doi.org/10.1109/ISMS.2015.46
  35. F. Hu, Q. Hao, K. Bao, A survey on software-defined network and OpenFlow: From concept to implementation. IEEE Communications Surveys & Tutorials, 16(4), (2014) 2181 – 2206. https://doi.org/10.1109/COMST.2014.2326417