Abstract

Drilling is a crucial machining process in manufacturing, often used for assembly purposes. Assembly challenges develop as a result of inappropriate hole geometry, such as circularity, perpendicularity and cylindricity regardless of whether the tolerance is within the limit. Deep hole drilling is a specialized technique to create holes with high depth to diameter ratio. In various industries, such as oil and gas, shipbuilding, and aerospace, deep hole drilling of stainless steel is performed to make components like drill collars, rotor shafts and fuel injector nozzles. This study investigates the impact of drilling process parameters on the hole quality, using Taguchi design of experiments for AISI 316 drilling optimization. Deep hole drilling experiments were carried out based on a Taguchi L9 array, with 3 different drills (HSS, M35, TiAlN); at 3 different cutting speeds and feed rates. The innovative concept of intermittent drilling and retraction is applied using CNC vertical milling machine and the results are examined for the achievable tolerance on size and geometry. Results indicate that the cutting tool material is the most significant factor influencing roundness, cylindricity, and hole size, followed by feed and speed. Speed has a lesser effect on perpendicularity compared to the cutting tool type and feed. Feed exerts a greater influence on surface roughness than the cutting tool type. Chip morphology indicates HSS drillbit is effective and stable in the process of producing quality holes.

Keywords

Deep Hole Drilling, Circularity, Cylindricity, Perpendicularity, AISI 316, Taguchi,

Downloads

Download data is not yet available.

References

  1. S. Tamura, K. Okamura, D. Uetake, T. Matsumura, Effect of Strain Hardening on Burr Control in Drilling of Austenitic Stainless Steel. International Journal of Automation Technology, 18(3), (2024) 417-425. https://doi.org/10.20965/ijat.2024.p0417
  2. R.H.N. Reddy, M. Alphonse, V.B. Raja, K. Palanikumar, D.S.K. Sanjay, K.M. Sudhan, Evaluating the wear studies and tool characteristics of coated and uncoated HSS drill bit–A review. Materials Today: Proceedings, 46, (2021) 3779-3785. https://doi.org/10.1016/j.matpr.2021.02.022
  3. G. Meral, M. Sarıkaya, M. Mia, H. Dilipak, U. Şeker, Optimization of hole quality produced by novel drill geometries using the Taguchi S/N approach. The International Journal of Advanced Manufacturing Technology, 101, (2019) 339-355. https://doi.org/10.1007/s00170-018-2956-z
  4. A. Çiçek, T. Kıvak, G. Samtaş, Application of Taguchi method for surface roughness and roundness error in drilling of AISI 316 stainless steel. Strojniški vestnik-Journal of Mechanical Engineering, 58(3), (2012) 165-174. https://doi.org/10.5545/sv-jme.2011.167
  5. R.R. Babu, R. Karthick, P. Sabarinathan, R.S. Sundar, C. Pradeep, Optimization of drilling parameters of Ss304 by Taguchi method. International Research Journal of Engineering and Technology (IRJET), 6(1), (2008) 1615-1629.
  6. M. Sundeep, M. Sudhahar, T. T. M. Kannan, P. V. Kumar, N. Parthipan, Optimization of drilling parameters on austenitic stainless steel (AISI 316) using taguchi's methodology. International Journal of Mechanical Engineering and Robotics Research, 3(4), (2014) 388-394.
  7. D. Biermann, F. Bleicher, U. Heisel, F. Klocke, H.C. Möhring, A. Shih, Deep hole drilling. CIRP Annals, 67(2), (2018) 673-694. https://doi.org/10.1016/j.cirp.2018.05.007
  8. D.A. Stephenson, J.S. Agapiou, (2018) Metal cutting theory and practice. CRC press.
  9. A.J. Haleel, Optimization Drilling Parameters of Aluminum Alloy Based on Taguchi Method. Al-Khwarizmi Engineering Journal, 14(2), (2018) 14-21. https://doi.org/10.22153/kej.2018.12.001
  10. V. Pahuja, S. Kant, C.S. Jawalkar, R. Verma, Influence of Process Parameters on Surface Roughness Hole Diameter Error and Burr Height in Drilling of 304L Stainless Steel. In Manufacturing Engineering: Select Proceedings of CPIE 2018, Springer, Singapore. https://doi.org/10.1007/978-981-13-6287-3_9
  11. M. Ramachandran, V. Fegade, U. Ragavendran, Parameters optimisation for drilling of austenitic stainless steel by taguchi method using desirability function analysis. Technology, 8(11), (2017) 229-237.
  12. K. Sharma, G. Kumar, M. Kumar, Application of Taguchi method coupled with GRA for optimization of drilling process parameters. IOP Conference Series: Materials Science and Engineering, IOP Publishing. 1149(1), (2021) 012032. https://doi.org/10.1088/1757-899X/1149/1/012032
  13. S.S.S. Sivam, G.B. Loganathan, K. Saravanan, S. Dinesh Guhan, A. Banerjee, (2021) Effects of drilling process parameters using ANOVA and graphical methods. In Advances in Materials Research: Select Proceedings of ICAMR 2019, Springer Singapore.
  14. T. Barik, S.K, Jena, S. Gahir, K. Pal, S.K. Pattnaik, Process parametric optimization in drilling of CFRP composites using GRA method, Materials Today: Proceedings, 39(4), (2021) 1281-1286. https://doi.org/10.1016/j.matpr.2020.04.220
  15. K.M. Alagappan, S. Vijayaraghavan, M.P. Jenarthanan, R. Giridharan, Optimization of process parameters on drilling of natural fibres reinforced in epoxy resin matrices using Taguchi–Grey relational analysis. Multidiscipline Modeling in Materials and Structures, 16(5), (2020) 937-949. https://doi.org/10.1108/MMMS-06-2019-0108
  16. C. Sarala Rubi, J. Udaya Prakash, C. Rajkumar, Optimization of Process Parameters using Taguchi Technique for Drilling Aluminium Matrix Composites (LM6 / B4C). IOP Conf. Series: Materials Science and Engineering, 912, (2020) 032016. https://doi.org/10.1088/1757-899X/912/3/032016
  17. S. Sheth, P.M. George, Experimental investigation, prediction and optimization of cylindricity and perpendicularity during drilling of WCB material using grey relational analysis. Precision Engineering, 45, (2016) 33-43. https://doi.org/10.1016/j.precisioneng.2016.01.002
  18. A. Khan, Determining the effects of selected cutting parameters on Circularity and Cylindricity in turning operations for steel 4140 using Taguchi methods. Electronic Research Journal of Engineering, Computer and Applied Sciences, 1, (2019) 14-29. https://doi.org/10.3923/tasr.2019.119.124
  19. A N. Siddiquee, Z.A., Khan, P. Goel, M. Kumar, G. Agarwal, N.Z. Khan, Optimization of deep drilling process parameters of AISI 321 steel using Taguchi method. Procedia Materials Science, 6, (2014) 1217-1225. https://doi.org/10.1016/j.mspro.2014.07.195
  20. E. Damavandi, A. Kolahdooz, Y. Shokoohi, S.A.L. Rostami S.M. Tabatabaei, Multi-objective parameter optimisation to improve machining performance on deep drilling process. International Journal of Machining and Machinability of Materials, 23(5-6), (2021) 500-513. https://doi.org/10.1504/IJMMM.2021.121196
  21. N.S. Patel, Priyansh L. Parihar, Jay S. Makwana, Parametric optimization to improve the machining process by using Taguchi method: a review. Materials Today: Proceedings, 47, (2021) 2709-2714. https://doi.org/10.1016/j.matpr.2021.03.005
  22. G.R. Cogorno, (2006) Geometric dimensioning and tolerancing for mechanical design. McGraw-Hill Publishers.
  23. J. Chajda, M. Grzelka, B. Gapinski, M. Pawłowski, M. Szelewski, M. Rucki. (2008) Coordinate measurement of complicated parameters like roundness, cylindricity, gear teeth or free-form surface. In 8th International Conference of Advanced Manufacturing Operations.
  24. K. Giasin, The effect of drilling parameters, cooling technology, and fiber orientation on hole perpendicularity error in fiber metal laminates. The International Journal of Advanced Manufacturing Technology, 97, (2018) 4081–4099. https://doi.org/10.1007/s00170-018-2241-1
  25. https://www.gdandtbasics.com/perpendicularity/ (as on March20, 2025).
  26. R.T. Bhole, R.S. Shelke, Optimization of drilling process parameters for AISI 316L by using taguchi method. International Journal of Scientific Research in Science, Engineering and Technology, 2(4), (2016) 100-106.
  27. A. Pramanik, A.K. Basak, M.N. Islam, Y. Dong, Sujan Debnath, J. J. Vora,,(2020) Optimization of Accuracy and Surface Finish of Drilled Holes in 350 Mild Steel. Optimization of Manufacturing Processes, Springer Series in Advanced Manufacturing, Springer. https://doi.org/10.1007/978-3-030-19638-7_3
  28. S. Sheth, P. Chauhan, B.S. Modi, A. Pancholi, Study and investigate effect of cutting parameters in drilling on cylindricity and perpendicularity. In Proceedings of the fourth national conference on recent advances in manufacturing (RAM-2014), SVNIT, Surat, 1, (2014) 43-48.
  29. M. Yavuz, H. Gökçe, İ. Çiftçi, H. Gökçe, C. Yavaş, U. Şeker, Investigation of the effects of drill geometry on drilling performance and hole quality. The International Journal of Advanced Manufacturing Technology, 106, (2020) 4623-4633. https://doi.org/10.1007/s00170-019-04843-3
  30. M. Sharidan, S. Sharif, (2014) Performance Evaluation on Drilling of Austenitic Stainless Steel 316L Using Hss Tool. Jurnal Mekanikal.
  31. S. A. Kahn, A. Nazir, M. P. Mughal, M. Q. Saleem, A. Hussain, Z. Ghulam, Deep hole drilling of AISI 1045 via high-speed steel twist drills: evaluation of tool wear and hole quality. International Journal of Advanced Manufacturing Technology, 93, (2017) 1115-1125. https://doi.org/10.1007/s00170-017-0587-4
  32. L. Pelikán, M. Slaný, O. Stránský, L. Beránek, Z. Pitrmuc, L. Čepová, S. Dvořáčková, Novel drill geometries for dry drilling of stainless steel. Journal of Manufacturing Processes, 92, (2023) 500-520. https://doi.org/10.1016/j.jmapro.2023.03.006
  33. Y. Wang, X. Yan, B. Li, G. Tu, The study on the chip formation and wear behavior for drilling forged steel S48CS1V with TiAlN-coated gun drill. International Journal of Refractory Metals and Hard Materials, 30(1), (2012) 200-207. https://doi.org/10.1016/j.ijrmhm.2011.08.010
  34. M. Balaji, B.S.N. Murthy, N.M. Rao, Optimization of cutting parameters in drilling of AISI 304 stainless steel using Taguchi and ANOVA. Procedia Technology, 25, (2016) 1106-1113. https://doi.org/10.1016/j.protcy.2016.08.217
  35. H.A. Al-Tameemi, T. Al-Dulaimi, M. O. Awe, S. Sharma, D.Y. Pimenov, U.Koklu, K. Giasin, Evaluation of cutting-tool coating on the surface roughness and hole dimensional tolerances during drilling of Al6061-T651 alloy. Materials, 14(7), (2021) 1783. https://doi.org/10.3390/ma14071783
  36. A. Aramcharoen, P.T. Mativenga, S. Yang, K.E. Cooke, D.G. Teer, Evaluation and selection of hard coatings for micro milling of hardened tool steel. International Journal of Machine Tools and Manufacture, 48(14), (2008) 1578-1584. https://doi.org/10.1016/j.ijmachtools.2008.05.011
  37. A.Z. Sultan, S. Sharif, D. Kurniawan, Effect of machining parameters on tool wear and hole quality of AISI 316L stainless steel in conventional drilling. Procedia Manufacturing, 2, (2015) 202-207. https://doi.org/10.1016/j.promfg.2015.07.035
  38. N.H. Chu, H.N. Nguyen, V.D. Nguyen, D.B. Nguyen, Torque Prediction in Deep Hole Drilling: Artificial Neural Networks Versus Nonlinear Regression Model. Applied Artificial Intelligence, 39(1), (2025) 2459482. https://doi.org/10.1080/08839514.2025.2459482