Abstract

Transformation in crop management systems, particularly in creating an environment that gives rise to sustainable farming, is achieved due to innovation and the advancement of modernized agricultural technology. Anyhow, meeting the increasing food demand is one of the great challenges that stand in front of the farmers. By taking into account, factors like soil, climate, and seasonality, the crop recommendation system plays a central role in providing customized guidance to the farmers. Current crop recommendation models are often confined by a paucity of feature selection, spatial-temporal integration shortfalls, and a finite amount of decision-tree diversity. All these shortfalls retrain their scalability and accuracy. To overcome the aforementioned blocks, an innovative framework is projected that includes the Best Incremental Random Subset (BIRS) feature selection method for choosing the best features and the Parallel Random Forest (PRF) -Tree Covariance Matrix model (PRF-TCM) encourages decision-tree diversity, permitting more accurate and efficient crop recommendations. Experimental results reveal that the proposed framework outperforms existing models with accuracy (89.7), precision (88.6), and recall (87.5). The framework shows significant improvements over current models, responsible for more viable agricultural practices.

Keywords

BIRS, Crop Recommendation, Machine Learning, Parallel Random Forest, Tree Covariance Matrix,

Downloads

Download data is not yet available.

References

  1. D. Batool, M. Shahbaz, H.S. Asif, K. Shaukat, T.M. Alam, I.A. Hameed, S. Luo, A hybrid approach to tea crop yield prediction using simulation models and machine learning. Plants, 11(15), (2022) 1925. https://doi.org/10.3390/plants11151925
  2. D. Dahiphale, P. Shinde, K. Patil, V. Dahiphale, (2023) Smart farming: Crop recommendation using machine learning with challenges and future ideas. Authorea Preprints. https://doi.org/10.36227/techrxiv.23504496.v1
  3. K.A. Reddy, R.K. Kumar, Recommendation System: A Collaborative Model for Agriculture. International Journal of Computer Sciences and Engineering, 6(1), (2018) 120-123. https://doi.org/10.26438/ijcse/v6i1.120123
  4. D. Femi and A. M. Mukunthan, Plant leaf infected spot segmentation using robust encoder-decoder cascaded deep learning model. Network: Computation in Neural Systems, (2023) 1–19. https://doi.org/10.1080/0954898X.2023.2286002
  5. K.O. McGraw, S.P. Wong, Forming inferences about some intraclass correlation coefficients. Psychological methods, 1(1), (1996) 30-46. https://psycnet.apa.org/doi/10.1037/1082-989X.1.1.30
  6. G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge & Data Engineering, 17(6), (2005) 734-749. https://doi.org/10.1109/TKDE.2005.99
  7. Atharva Ingle, (2020) Crop Recommendation Dataset (Version V1). [Dataset]. Kaggle. https://www.kaggle.com/datasets/atharvaingle/crop-recommendation-dataset
  8. S. Gupta, A. Geetha, K. S. Sankaran, A.S. Zamani, M. Ritonga, R. Raj, H. S. Mohammed, Machine learning- and feature selection-enabled framework for accurate crop yield prediction. Journal of Food Quality, 2022(1), (2022) 6293985. https://doi.org/10.1155/2022/6293985
  9. H. Liu, H. Motoda, (2007) Computation method of feature selction, CRC Press, 440.
  10. M.L. Zhang, Z.H. Zhou, A review on multi-label learning algorithms. IEEE transactions on knowledge and data engineering, 26(8), (2013) 1819-1837. https://doi.org/10.1109/TKDE.2013.39
  11. S.N. Khan, D. Li, M. Maimaitijiang, Geographically weighted random forest approach to predict corn yield in the US Corn Belt. Remote Sensing, 14(12), (2022) 2843. https://doi.org/10.3390/rs14122843
  12. L. Zhang, L. Xie, Z. Wang, C. Huang, Cascade parallel random forest algorithm for predicting rice diseases in big data analysis. Electronics, 11(7), (2022) 1079. https://doi.org/10.3390/electronics11071079
  13. A. Bhullar, K. Nadeem, R.A. Ali, Simultaneous multi-crop land suitability prediction from remote sensing data using semi-supervised learning. Scientific Reports, 13(1), (2023) 6823. https://doi.org/10.1038/s41598-023-33840-6
  14. H. Burdett, C. Wellen, Statistical and machine learning methods for crop yield prediction in the context of precision agriculture. Precision Agriculture, 23, (2022) 1553–1574. https://doi.org/10.1007/s11119-022-09897-0
  15. D. Tang, Y. Liu, and T.-K. Kim, Fast pedestrian detection by cascaded random forest with dominant orientation templates. British Machine Vision Conference (BMVC), 2016.
  16. S. Janrao, K. Shah, A. Pavate, R. Patil, S. Bankar, A. Vasoya, Conglomerate crop recommendation by using multi-label learning via ensemble supervised clustering techniques. International Research Journal of Multidisciplinary Technovation, 6(3), (2024) 90–100. https://doi.org/10.54392/irjmt2437
  17. P.S. Kiran, G. Abhinaya, S. Sruti, N. Padhy, A Machine Learning-Enabled System for Crop Recommendation. Engineering Proceedings, 67(1), (2024) 51. https://doi.org/10.3390/engproc2024067051
  18. A. Maheswary, S. Nagendram, K.U. Kiran, S.H. Ahammad, P.P. Priya, M.A. Hossain, A.N.Z. Rashed, Intelligent Crop Recommender System for Yield Prediction Using Machine Learning Strategy. Journal of the Institution of Engineers (India): Series B, 105(4), (2024) 979-987. https://doi.org/10.1007/s40031-024-01029-8
  19. B. Dey, J. Ferdous, R. Ahmed, Machine learning based recommendation of agricultural and horticultural crop farming in India under the regime of NPK, soil pH and three climatic variables. Heliyon, 10(3), (2024). https://doi.org/10.1016/j.heliyon.2024.e25112
  20. X. Yuan, S. Liu, W. Feng, G. Dauphin, Feature importance ranking of random forest-based end-to-end learning algorithm. Remote Sensing, 15(21), (2023) 5203. https://doi.org/10.3390/rs15215203
  21. M.K. Senapaty, A. Ray, N. Padhy, IoT-enabled soil nutrient analysis and crop recommendation model for precision agriculture. Computers, 12(13), (2023) 61. https://doi.org/10.3390/computers12030061
  22. R.K. Rajak, A. Pawar, M. Pendke, P. Shinde, S. Rathod, A. Devare, Crop recommendation system to maximize crop yield using machine learning technique. International Research Journal of Engineering and Technology, 4(12), (2017) 950-953.
  23. S.K. Apat, J. Mishra, K.S. Raju, N. Padhy, An artificial intelligence-based crop recommendation system using machine learning. Journal of Scientific & Industrial Research (JSIR), 82(5), (2023) 558–567. https://doi.org/10.56042/jsir.v82i05.1092
  24. Y.S. Mahmoud, S.A. Gamel, F.M. Talaat, Enhancing crop recommendation systems with explainable artificial intelligence: A study on agricultural decision-making. Neural Computing and Applications, 36(1), (2024) 5695–5714. https://doi.org/10.1007/s00521-023-09391-2
  25. M.K. Senapaty, A. Ray, N. Padhy, A decision support system for crop recommendation using machine learning classification algorithms. Agriculture, 14(8), (2024) 1256. https://doi.org/10.3390/agriculture14081256
  26. S. Rani, A.K. Mishra, A. Kataria, S. Mallik, H. Qin, Machine learning-based optimal crop selection system in smart agriculture. Scientific Reports, 13, (2023) 15997. https://doi.org/10.1038/s41598-023-42356-y
  27. S.S. Saritha, An experimental analysis of machine learning techniques for crop recommendation. Nigerian Journal of Technology, 43(2), (2024). https://doi.org/10.4314/njt.v43i2.13
  28. G.B. Dela Cruz, B.D. Gerardo, B.T. Tanguilig III, Agricultural Crops Classification Models Based on PCA-GA Implementation in Data Mining. International Journal of Modeling and Optimization, 4(5), (2014) 375. https://doi.org/10.7763/IJMO.2014.V4.404
  29. S.K.S. Durai, M.D. Shamili, Smart farming using Machine Learning and Deep Learning techniques. Decision Analytics Journal, 3, (2022) 100041. https://doi.org/10.1016/j.dajour.2022.100041
  30. B.F. Darst, K.C. Malecki, C.D. Engelman, Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genomic Data, 19(S1), (2018) 65. https://doi.org/10.1186/s12863-018-0633-8