Abstract

The research deals with design a Heat Recovery Steam Generator (HRSG) model through Computational Fluid Dynamics (CFD) to evaluate Selective Catalytic Reduction (SCR) deNOₓ procedures that help maintain sustainable environmental emissions. We study six swirl angles ranging from θ = 10° to θ = 60° at the GT diffuser exit to determine how they affect ammonia (NH₃) mixing before the SCR catalyst bed. The evaluation process occurred under mass flow conditions of 350 kg/s and 700 kg/s. Ammonia mixing uniformity must comply with Industrial standards by keeping the RMS value of mole fraction distribution less than 5% according to manufacturer specifications. The results indicate that a swirl angle of 30° produces the best NH₃ mixing performance with RMS 4.27% and theta = 40° provides the best temperature distribution ranging within ±7.41°C. The research delivers vital information regarding SCR system optimization when operational parameters change.

Keywords

Selective Catalytic Reduction (SCR), Swirl Angle θ, Gas Turbine (GT) diffuser, Ammonia (NH₃) mixing,

Downloads

Download data is not yet available.

References

  1. Z. Zhou, J. Chang, X. Wang, Large Eddy Simulation of Hydrodynamics and DeNOx Process in a Coal-Fired Power Plant SCR System. Journal of Environmental Management, 320, (2022) 115800. https://doi.org/10.1016/j.jenvman.2022.115800
  2. C. Zheng, X. Li, J. Li, J. Duan, H. Wu, F. Zhu, Investigation on the Ammonia Emission Characteristics in Coal-Fired Power Plants of China. Fuel, 314, (2022) 123046. https://doi.org/10.1016/j.fuel.2021.123046
  3. B. Hu, C. Chen, S. Jiang, X. Liu, Q. Dai, Investigating the Optimization Design of Internal Flow Fields Using a Selective Catalytic Reduction Device and Computational Fluid Dynamics. Energies, 15(4), (2022) 1451. https://doi.org/10.3390/en15041451
  4. J. An X. Luo, Numerical Simulation of Ash Erosion in the Selective Catalytic Reduction Catalyst of Power Plant Boiler. Energy Reports, 8, (2022) 1313–1321. https://doi.org/10.1016/j.egyr.2021.11.169
  5. M. Ye, F. Qian, Y. Gao, J. Lu, Y. Han, N. Huang, B. Xu, H. Wu, CFD Analysis of Influencing Factors on SCR Denitration Efficiency of Sintering Flue Gas Based on Response Surface Methodology. Atmospheric Pollution Research, 12(7), (2021) 101107. https://doi.org/10.1016/j.apr.2021.101107
  6. M.G. Kim, D.C. Seo, H.T. Chung, A CFD Study on Flow Control of Ammonia Injection for Denitrification Processes of SCR Systems in Coal-Fired Power Plants. Energies, 14(5), (2021) 1352. https://doi.org/10.3390/en14051352
  7. G. Liu, W. Bao, W. Zhang, D. Shen, Q. Wang, C. Li, K. H. Luo, An Intelligent Control of NH₃ Injection for Optimizing the NOx/ NH₃ Ratio in SCR System. Journal of the Energy Institute, 92(5), (2019) 1262–1269. https://doi.org/10.1016/j.joei.2018.10.008
  8. J. Sohn, I. S. Hwang, J. Hwang, Improvement of Ammonia Mixing in an Industrial Scale Selective Catalytic Reduction De-NOx System of a Coal-Fired Power Plant: A Numerical Analysis. Process Safety and Environmental Protection, 147, (2021) 334–345. https://doi.org/10.1016/j.psep.2020.09.043
  9. X. Gao, B. Wang, X. Yuan, S. Lei, Q. Qu, C. Ma, L. Sun, Optimal Design of Selective Catalyst Reduction Denitrification System Using Numerical Simulation. Journal of Environmental Management, 231, (2019) 909–918. https://doi.org/10.1016/j.jenvman.2018.10.060
  10. C. Zhang, G. Liu, X. Zhang, A. Song, D. Xu, X. Jiang, C. Gong, X. Zhou, Q. Gong, D. Shen, "A Partitioned Dynamic Ammonia Injection Strategy Based on Real-Time NOx Flux Distribution Characteristics in an SCR System. Fuel, 381, (2025) 133711. https://doi.org/10.1016/j.fuel.2024.133711
  11. Y. Chen, H. Xiao, C. Hong, Y. Ma, Y. Ni, Application of a Composite Parameter-Driven TimeMixer Model for Multi-Step Prediction of NOx at the SCR Inlet of a 660 MW Boiler, Fuel, 386, (2025) 134060. https://doi.org/10.1016/j.fuel.2024.134060
  12. Z. Dong, W. Jiang, Z. Wu, X. Zhao, M. Sun, Prediction of NOx Emission from SCR Zonal Ammonia Injection System of Boiler Based on Ensemble Incremental Learning. Energy, 319, (2025) 135049. https://doi.org/10.1016/j.energy.2025.135049
  13. W.P. Adamczyk, B. Isaac, J. Parra-Alvarez, S.T. Smith, D. Harris, J.N. Thornock, M. Zhou, P.J. Smith, R. Żmuda, Application of LES-CFD for Predicting Pulverized-Coal Working Conditions after Installation of NOx Control System. Energy, 160, (2018) 693–709. https://doi.org/10.1016/j.energy.2018.07.031
  14. Y. Gao, Q. Liu, L. Bian, Numerical Simulation and Optimization of Flow Field in the SCR Denitrification System on a 600 MW Capacity Units. Energy Procedia, 14, (2012) 370–375. https://doi.org/10.1016/j.egypro.2011.12.944
  15. X. Ye, Research and Application of Multi-Dimension Numerical Simulation Optimization for SCR DeNOx Flow Field. IOP Conference Series: Earth and Environmental Science, 113, (2018) 012181. https://doi.org/10.1088/1755-1315/113/1/012181
  16. L. Tan, P. Feng, S. Yang, Y. Guo, S. Liu, Z. Li, CFD Studies on Effects of SCR Mixers on the Performance of Urea Conversion and Mixing of the Reducing Agent. Chemical Engineering and Processing - Process Intensification, 123, (2018) 82–88. https://doi.org/10.1016/j.cep.2017.11.003
  17. J. Zhu, Z. Ye, D. Gong, Q. Wang, Q. Luo, Ammonia Distribution Characteristics at the Selective Catalytic Reduction Reactor Inlet with Linear Partitioning. iScience, 28(1), (2025) 111588. https://doi.org/10.1016/j.isci.2024.111588
  18. H.S. Choi, S.J. Kim, K.T. Kim, Enhancement of Turbulent Scalar Mixing and Its Application by a Multihole Nozzle in Selective Catalytic Reduction of NOx. Journal of Material Cycles and Waste Management, 10(1), (2008) 1–6. https://doi.org/10.1007/s10163-007-0190-0
  19. D. Yongqiang, M. Zhongming, M. Yijun, L. Nianping, Y. Guoming, Numerical Simulations of SCR DeNOx System for a 660MW Coal-Fired Power Station. E3S Web Conference International Conference on Energy Materials and Environment Engineering (ICEMEE 2018), 38, (2018) 04009. https://doi.org/10.1051/e3sconf/20183804009
  20. Z. Lei, C. Wen, B. Chen, Optimization of Internals for Selective Catalytic Reduction (SCR) for NO Removal. Environmental Science & Technology, 45(8), (2011) 3437–3444. https://doi.org/10.1021/es104156j
  21. F. Sadeghi, B. Tirandazi, A. Khalili-Garakani, S. Nasseri, R. Nabizadeh Nodehi, N. Mostoufi, Investigating the Effect of Channel Geometry on Selective Catalytic Reduction of NOx in Monolith Reactors. Chemical Engineering Research and Designvol, 118, (2017) 21–30. https://doi.org/10.1016/j.cherd.2016.12.003
  22. S. Gourari, F. Mebarek-Oudina, O.D. Makinde, M. Rabhi, Numerical Investigation of Gas-Liquid Two-Phase Flows in a Cylindrical Channel. Defect and Diffusion Forum, 409, (2021) 39-48. https://doi.org/10.4028/www.scientific.net/DDF.409.39
  23. M. Li, H. Yan, J. Zhou, Numerical Simulation and Optimization of Flow Field in the SCR Denitrification System, proceeding of the 2009 International Conference on Energy and Environment Technology, IEEE, (2009) 415–418. https://doi.org/10.1109/ICEET.2009.565
  24. C. Haifeng, (2009) Research and Application of Numerical Calculation Methods in SCR DeNOx Reactor & Duct Design. Proceeding of the 11th International Conference on Electrostatic Precipitation, Springer, Berlin. https://doi.org/10.1007/978-3-540-89251-9_126
  25. M. Guo, J. Gao, K. Niu, Y. Huang, M. Xiao, Y. Zhao, S. Cui, W. Ye, B. Liu, SCR Performance and Mechanism Study with Multiple Poisoning Gases on CeOx Promoted V2O5-WO3/TiO2 Monolithic Honeycomb Catalyst of NOx Removal. Separation and Purification Technology, 363, (2025) 132087. https://doi.org/10.1016/j.seppur.2025.132087
  26. Y. Wang, X. Ren, K. Li, Y. Shao, Y. Zhou, M. Zhao, C. Liu, Y. Liu, X. Liu, A. Dong, H. Wu, M. Wang, L. Meng, W. Zhang, Z. Li, and Q. Liu, "Enhanced NH₃-SCR Performance of High-Silica MER Zeolite via Template Synthesis. Fuel, 392, (2025) 134818. https://doi.org/10.1016/j.fuel.2025.134818
  27. S. Xiao, C. Li, X. Zheng, L. Li, J. Si, X. Shu, X. Zeng, Application of a Low-Cost and High-Efficiency Polymer Non-Catalytic Reduction Technology for NOx Removal in Waste-to-Energy Plant. Journal of Environmental Sciences, In Press, Journal Pre-proof, (2025). https://doi.org/10.1016/j.jes.2025.01.026
  28. F. Lakhfif, Z. Nemouchi, F. Mebarek-Oudina, Numerical Investigation of the Different Spray Combustion Models under Diesel Condition. International Journal of Applied Engineering Research, 11(18), (2016) 9393-9399. https://doi.org/10.26524/ijpefs1945
  29. H. Tang, G. Yao, Z. Wang, J. Yang, X. Han, L. Sun, and Z. Xu, Study on Low-Load Combustion Characteristics of a 600 MW Power Plant Boiler with Self-Sustaining Internal Combustion Burners. Applied Thermal Engineering, 267, (2025) 125859. https://doi.org/10.1016/j.applthermaleng.2025.125859
  30. H. Wang, Y. Yan, Z. Li, Z. Cao, Y. Fu, Z. Zhou, D. Zhao, Carbon Mitigation Potential and Economic Benefits of Biomass Co-Firing in Coal-Fired Power Plants: A Case Study in Nanjing, China. Energy, 314, (2025) 134262. https://doi.org/10.1016/j.energy.2024.134262
  31. Y. Xu, Y. Zhang, J. Wang, J. Yuan, Application of CFD in the Optimal Design of a SCR–DeNOx System for a 300 MW Coal-Fired Power Plant. Computers & Chemical Engineering, 49, (2013) 50–60. https://doi.org/10.1016/j.compchemeng.2012.09.014
  32. Y. Xu, Y. Zhang, F. Liu, W. Shi, J. Yuan, CFD Analysis on the Catalyst Layer Breakage Failure of an SCR-DeNOx System for a 350MW Coal-Fired Power Plant. Computers & Chemical Engineering, 69, (2014) 119–127. https://doi.org/10.1016/j.compchemeng.2014.07.012
  33. X. Liu, H. Tan, Y. Wang, F. Yang, H. Mikulčić, M. Vujanović, N. Duić, Low NOx Combustion and SCR Flow Field Optimization in a Low Volatile Coal Fired Boiler. Journal of Environmental Management, 220, (2018) 30–35. https://doi.org/10.1016/j.jenvman.2018.05.009
  34. O.T. Kaario, V. Vuorinen, L. Zhu, M. Larmi, R. Liu, Mixing and Evaporation Analysis of a High-Pressure SCR System Using a Hybrid LES-RANS Approach. Energy, 120, (2017) 827–841. https://doi.org/10.1016/j.energy.2016.11.138
  35. F. Mebarek-Oudina, H. Laouira, A.K. Hussein, M. Omri, A. Abderrahmane, L. Kolsi, U. Biswal, Mixed Convection inside a Duct with an Open Trapezoidal Cavity Equipped with Two Discrete Heat Sources and Moving Walls. Mathematics, 10(6), (2022) 929. https://doi.org/10.3390/math10060929
  36. Y. Ding, S. Yinbiao, W. Qingyun, Z. Hao, Y. Xinglian, (2016) Mixing Enhancement of Ammonia and Flue Gas in the SCR DeNOx System. Clean Coal Technology and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-10-2023-0_77
  37. L. Han, S. Cai, M. Gao, J. Hasegawa, P. Wang, J. Zhang, L. Shi, D. Zhang, Selective Catalytic Reduction of NOx with NH₃ by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 119(19), (2019) 10916–10976. https://doi.org/10.1021/acs.chemrev.9b00202
  38. R.K.C. Amadi, D. Charles, Efficiency Analysis of the Turbine using Calorific Value Parameters for a 10 Megawatt Gas Turbine. International Research Journal of Multidisciplinary Technovation, 3(4), (2021) 59–66. https://doi.org/10.34256/irjmt2147
  39. D. Anand, S. Vellingiri, Design and Analysis of Exhaust Manifold. International Research Journal of Multidisciplinary Technovation, 2(6), (2020) 1–8. https://doi.org/10.34256/irjmt2061
  40. F. Gholami, M. Tomas, Z. Gholami, M. Vakili, Technologies for the Nitrogen Oxides Reduction from Flue Gas: A Review. Science of the Total Environment, 714, (2020) 136712. https://doi.org/10.1016/j.scitotenv.2020.136712
  41. G. Liu, Y. Cui, J. Ji, D. Shen, Q. Wang, C. Li, K. H. Luo, A Technical Method to Improve NOx/ NH₃ Mixing Ratio in SCR System and Its Engineering Applications. Journal of the Energy Institute, 92(6), (2019) 1757–1764. https://doi.org/10.1016/j.joei.2018.12.005
  42. Z. Chen, Q. Liu, H. Liu, T. Wang, Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD. Atmosphere, 15(8), (2024) 997. https://doi.org/10.3390/atmos15080997
  43. ANSYS, Inc., ANSYS Fluent User's Guide, Release 19.0, ANSYS, Inc., Canonsburg, PA, 2020.