Abstract

In this study, computational methods were employed to investigate the structural, vibrational, chemical shift, topological, thermodynamical, and biological properties of 2-[1-(2,4-dichlorobenzyl)-1H-indazol-3-yl]propan-2-ol (DCBIP), along with solvent effects on its electronic spectra, frontier molecular orbitals (FMO), and molecular electrostatic potential (MEP) surfaces. Molecular geometry analysis identified seven bond types and nine bond angles. Vibrational analysis confirmed 108 fundamental modes associated with OH, CO, CH, CC, CN, NN, CCl, CH₂, and CH₃ functional groups. Chemical shift analysis validated the structural integrity of DCBIP, with deshielding effects observed for key carbons and protons due to electronegative interactions, hydrogen bonding, and inductive effects from chlorine substituents. The consistent FMO energy gap (4.9797–4.9879 eV) across solvents suggests minimal solvent influence, with greater stability in polar environments. Natural bond orbital (NBO) analysis identified the strongest stabilization from the lone pair (LP) of N4 donating to the antibonding σ*(C8-C9) orbital (40.25 kJ/mol), enhancing delocalization in the indazole ring. Mulliken analysis revealed O3 as the most electronegative site and C9 as the most electropositive, while MEP maps confirmed nucleophilic regions over O3 and electrophilic sites over aromatic hydrogens. The specific heat capacity of DCBIP (77.31 cal mol⁻¹K⁻¹) reflects its moderate thermal energy absorption, influenced by vibrational contributions from its complex structure. Topological analyses highlighted electron localization at hydrogen atoms (H32, H37), delocalization in six-membered rings, and the presence of van der Waals interactions and steric effects in DCBIP. Molecular docking studies of DCBIP with 1EOU and 5FDC demonstrated strong binding affinities of -6.89 kcal/mol and -7.45 kcal/mol, respectively, suggesting its potential as an anticonvulsant agent.

Keywords

DFT, Solvent Effect, NBO, Chemical Shifts, MEP, Molecular Docking,

Downloads

Download data is not yet available.

References

  1. I. Denya, S.F. Malan, J. Joubert, Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert opinion on therapeutic patents, 28(6), (2018) 441-453. https://doi.org/10.1080/13543776.2018.1472240
  2. S. Mal, U. Malik, M. Mahapatra, A. Mishra, D. Pal, S.K. Paidesetty, A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Development Research, 83(7), (2022)1469-1504. https://doi.org/10.1002/ddr.21979
  3. W. Song, L. Li, L. Ma, Z. Yang, Z. Zheng, Z. Zhou, Synthesis, crystal structure, DFT, vibrational properties, Hirshfeld surface and antitumor activity studies of a new compound 2-(2-chloro-6-(m-tolyl) imidazo [1, 2-a] pyridin-3-yl)-N, N-diethylacetamide. Journal of Molecular Structure, 1307, (2024) 138052. https://doi.org/10.1016/j.molstruc.2024.138052
  4. A. Singh, D. Malhotra, K. Singh, R. Chadha, P.M.S. Bedi, Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure, 1266, (2022) 133479. https://doi.org/10.1016/j.molstruc.2022.133479
  5. J.F. Lu, P. Huang, D. Zhang, Q. Wang, N. Zheng, R. Wu, Q. Liu, L.X. Jin, X.H. Yu, X.H. Ji, Y.H. Gao,1-(3-Amino-4-morpholino-1H-indazole-1-carbonyl)-N-phenylcyclopropane-1 carboxamide: Design, synthesis, crystal structure, antitumor activity, DFT and Hirshfeld surface analysis. Journal of Molecular Structure, 1210, (2020) 127996. https://doi.org/10.1016/j.molstruc.2020.127996
  6. S. Puri, S. Sawant, K. Juvale, A comprehensive review on the indazole based derivatives as targeted anticancer agents. Journal of Molecular Structure, 1284 (2023) 135327. https://doi.org/10.1016/j.molstruc.2023.135327
  7. A. Tanitame, Y. Oyamada, K. Ofuji, Y. Kyoya, K. Suzuki, H. Ito, M. Kawasaki, K. Nagai, M. Wachi, J.I. Yamagishi, Design, synthesis and structure–activity relationship studies of novel indazole analogues as DNA gyrase inhibitors with Gram-positive antibacterial activity. Bioorganic & medicinal chemistry letters, 14(11), (2024) 2857-2862. https://doi.org/10.1016/j.bmcl.2004.03.044
  8. M. Minu, A. Thangadurai, S.R. Wakode, S.S. Agrawal, B. Narasimhan, Synthesis, antimicrobial activity and QSAR studies of new 2, 3-disubstituted-3, 3a, 4, 5, 6, 7-hexahydro-2H-indazoles. Bioorganic & medicinal chemistry letters, 19(11), (2009) 2960-2964. https://doi.org/10.1016/j.bmcl.2009.04.052
  9. R.P. Chaudhary, P. Gautam, D. Gautam, I. Mittal, Ultrasound assisted regioselective synthesis, photophysical and structural studies of 1-substituted indazol-4 (5H)-ones and enaminodiketones of dimedone. Journal of Molecular Structure, 1228, (2021) 129710. https://doi.org/10.1016/j.molstruc.2020.129710
  10. E.A. Abdelsalam, W.A. Zaghary, K.M. Amin, N.A. Abou Taleb, A.A. Mekawey, W.M. Eldehna, H.A. Abdel-Aziz, S.F. Hammad, Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorganic Chemistry, 89, (2019) 102985. https://doi.org/10.1016/j.bioorg.2019.102985
  11. P.J. Park JoonSeok, Y.K. Yu KyungA, K.T. Kang TaeHee, K.S. Kim SungHoon, S.Y. Suh, Y. Ger, Discovery of novel indazole-linked triazoles as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 17, (2007) 3486-3490. https://doi.org/10.1016/j.bmcl.2007.03.074
  12. K.P. Harish, K.N. Mohana, L. Mallesha, Synthesis of indazole substituted-1, 3, 4-thiadiazoles and their anticonvulsant activity. Drug invention today, 5(2), (2013) 92-99. https://doi.org/10.1016/j.dit.2013.06.002
  13. A. Upadhyay, S.K. Srivastava, S.D. Srivastava, Conventional and microwave assisted synthesis of Some new N-[(4-oxo-2-substituted aryl −1, 3-thiazolidine)-acetamidyl]-5-nitroindazoles and its antimicrobial activity. European Journal Medicinal Chemistry, 45(9), (2010) 3541-3548. https://doi.org/10.1016/j.ejmech.2010.04.029
  14. F.A.B. Schutz, T.K. Choueiri, C.N. Sternberg, Pazopanib: clinical development of a potent anti-angiogenic drug. Critical Reviews in Oncology/Hematology, 77(3), (2011) 163-171. https://doi.org/10.1016/j.critrevonc.2010.02.012
  15. R. Tandon, I. Singh, V. Luxami, N. Tandon, K. Paul, Recent Advances and Developments of in vitro Evaluation of Heterocyclic Moieties on Cancer Cell Lines. The Chemical Record, 19(2-3), (2019) 362-393. https://doi.org/10.1002/tcr.201800024
  16. M. Bersanelli, M. Brunelli, L. Gnetti, U. Maestroni, S. Buti, Pazopanib as a possible option for the treatment of metastatic non-clear cell renal carcinoma patients: a systematic review. Therapeutic Advances in Medical Oncology, 12, (2020) 1758835920915303. https://doi.org/10.1177/1758835920915303
  17. G. Sonpavde, T.E. Hutson, B.I. Rini, Axitinib for renal cell carcinoma. Expert opinion on investigational drugs, 17(5), (2008) 741-748. https://doi.org/10.1517/13543784.17.5.741
  18. G. Sonpavde, T.E. Hutson, C.N. Sternberg, Pazopanib, a potent orally administered small-molecule multitargeted tyrosine kinase inhibitor for renal cell carcinoma. Expert opinion on investigational drugs, 17(2), (2008) 253-261. https://doi.org/10.1517/13543784.17.2.253
  19. M. Rouhani, Evaluation of structural properties and antioxidant capacity of Proxison: A DFT investigation. Computational and Theoretical Chemistry, 1195, (2021) 113096. https://doi.org/10.1016/j.comptc.2020.113096
  20. K. Anandan, P. Kolandaivel, R. Kumaresan, Ab initio and DFT studies on tautomerism of indazole in gaseous and aqueous phases. Journal of Molecular Structure: Theochem, 686(1-3), (2004) 83-89. https://doi.org/10.1016/j.theochem.2004.08.014
  21. B. Morzyk-Ociepa, K. Szmigiel-Bakalarz, M. Nentwig, O. Oeckler, M. Malik, Structural (X-ray), spectroscopic (FT-IR, FT-Raman) and computational (DFT) analysis of intermolecular interactions in 1H-indazole-3-carbaldehyde. Journal of Molecular Structure, 1237, (2021) 130318. https://doi.org/10.1016/j.molstruc.2021.130318
  22. P.V. Ramana, Y.R. Krishna, K.C. Mouli, Experimental FT-IR and UV–Vis spectroscopic studies and molecular docking analysis of anti-cancer drugs Exemestane and Pazopanib. Journal of Molecular Structure, 1263, (2022) 133051. https://doi.org/10.1016/j.molstruc.2022.133051
  23. M.M. Andres-Mach, M. Dudra-Jastrzebska, M. Mohamed, K.M. Sawicka, J. Kozinska, S.J. Czuczwar, 7-Nitroindazole enhances dose-dependently the anticonvulsant activities of conventional antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Pharmacological reports, 58(660), (2006) 660-671.
  24. N. Matsumura, K. Kikuchi-Utsumi, K. Sakamaki, M. Watabe, K. Aoyama, T. Nakaki, Anticonvulsant action of indazole. Epilepsy research, 104(3), (2013) 203-216. https://doi.org/10.1016/j.eplepsyres.2012.11.001
  25. Parr, R. G. (1989). Density functional theory of atoms and molecules. In Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry, Springer, Netherlands.
  26. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 140, (1965) A1133. https://doi.org/10.1103/PhysRev.140.A1133
  27. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Physical review, 136, (1964) B864. https://doi.org/10.1103/PhysRev.136.B864
  28. D.R. Salahub, M.C. Zerner, The Challenge of d and f Electrons: Theory and Computation. American Chemical Society, 394, (1989). https://doi.org/10.1021/bk-1989-0394
  29. A.D. Becke, Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics, 96(3), (1992) 2155-2160. https://doi.org/10.1063/1.462066
  30. C. Lee, W. Yang, R.GParr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), (1988) 785. https://doi.org/10.1103/PhysRevB.37.785
  31. B. Miehlich, A. Savin, H. Stoll, H. Preuss. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chemical Physics Letters, 157(3), (1989) 200-206. https://doi.org/10.1016/0009-2614(89)87234-3
  32. M. J. Frisch, (2009). Gaussion 09W, Revision A. 02, Gaussion Inc. Walling ford, CT.
  33. M. Petersilka, U.J. Gossmann, E.K.U. Gross. Excitation energies from time-dependent density-functional theory. Physical review letters. 76(8), (1996) 1212. https://doi.org/10.1103/PhysRevLett.76.1212
  34. E. Runge, E.K.U Gross. Density-functional theory for time-dependent systems. Physical review letters, 52(12), (1984) 997. https://doi.org/10.1103/PhysRevLett.52.997
  35. R. Bauernschmitt, R. Ahlrichs. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chemical Physics Letters, 256(4-5), (1996) 454-464. https://doi.org/10.1016/0009-2614(96)00440-X
  36. R. Ditchfield, Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts. Molecular Physics, 27(4), (1974) 789-807. https://doi.org/10.1080/00268977400100711
  37. K. Wolinski, J. F. Hinton, P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), (1990) 8251-8260. https://doi.org/10.1021/ja00179a005
  38. J.R. Cheeseman, G.W. Trucks, T.A. Keith, M.J. Frisch, A comparison of models for calculating nuclear magnetic resonance shielding tensors. The Journal of chemical physics, 104(14), (1996) 5497-5509. https://doi.org/10.1063/1.471789
  39. J. Gauss, Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals. Chemical physics letters, 191(6), (1992) 614-620. https://doi.org/10.1016/0009-2614(92)85598-5
  40. J.A. Bohmann, F. Weinhold, T.C. Farrar, Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations. The Journal of chemical physics, 107(4), (1997) 1173-1184. https://doi.org/10.1063/1.474464
  41. R.D.I.I. Dennington, T.A. Keith, J.M. Millam, (2016). GaussView, version 6.0. 16. Semichem Inc Shawnee Mission KS, 13(1).
  42. G.A. Zhurko, D.A. Zhurko, (2009). Chemcraft Program Version 1.6 (Build 315).
  43. A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Journal of Scientific Reports, 7(1), (2017) 42717. https://doi.org/10.1038/srep42717
  44. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal Computational Chemistry, 30, (2009) 2785-2791. https://doi.org/10.1002/jcc.21256
  45. R.A. Laskowski, M. B. Swindells, LigPlot+: multiple ligand–protein interaction diagrams for drug discovery, 51, (2011) 2778-2786. https://doi.org/10.1021/ci200227u
  46. S. Yuan, HCS. Chan, Z. Hu. Using PyMOL as a platform for computational drug design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 7(2), (2017) e1298. https://doi.org/10.1002/wcms.1298
  47. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), (2012) 580-592. https://doi.org/10.1002/jcc.22885
  48. S. Armakovic, S.J. Armakovic, Atomistica. Online–web application for generating input files for ORCA molecular modelling package made with the Anvil platform. Molecular simulation, 49(1), (2023) 117-123. https://doi.org/10.1080/08927022.2022.2126865
  49. S. Armakovic, S.J. Armakovic, Online and desktop graphical user interfaces for xtb programme from atomistica. online platform. Molecular Simulation, 50(7-9), (2024) 560-570. https://doi.org/10.1080/08927022.2024.2329736
  50. L. K. Mapp, S.J. Coles, S. Aitipamula, CCDC 1531957: Experimental Crystal Structure Determination, 2017,
  51. A. Ram Kumar, S. Selvaraj, A.S. Vickram, GP Sheeja Mol, Shikha Awasthi, M. Thirunavukkarasu, M. Selvaraj, S. Basumatary. Exploring the potential of diosgenin as a promising antitumor agent through comprehensive spectroscopic characterization, solvent–solute interactions, topological properties, Hirshfeld surface, and molecular docking interactions with 2NZT and 2I1V proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 327, (2025), 125349. https://doi.org/10.1016/j.saa.2024.125349
  52. V. Vijayalakshmi, N. Kanagathara, Janczak Jan, M.K. Marchewka, Mohammad Azam, K. Senthilkumar, Structural, spectroscopic and second harmonic generation evaluation of 1, 2, 4-triazolinium tartrate-tartaric acid as a promising nonlinear optical material. Optical Materials, 147, (2024) 11469. https://doi.org/10.1016/j.optmat.2023.114694
  53. S. Gunasekaran, S. Kumaresan, S. Seshadri, S. Muthu, Vibrational spectra and normal coordinate analysis of structure of procarbazine. Indian Journal of Pure and Applied Physics, (2008). https://doi.org/10.1007/s12043-008-0183-0
  54. P. Divya, V. S. Jeba Reeda, V. Bena Jothy. Fungicide compound 2, 3-dichloronaphthalene-1, 4-dione: Non-covalent interactions (QTAIM, RDG and ELF), combined vibrational spectroscopic investigations using DFT approach with experimental analysis, electronic, molecular docking scrutiny in-vitro assay and thermodynamic property analysis. Journal of Molecular Liquids, 400, (2024) 124544. https://doi.org/10.1016/j.molliq.2024.124544
  55. N. Suma, D. Aruldhas, I. Hubert Joe, S. Balachandran, A. Ronaldo Anuf, Arun Sasi, and Jesby George, Vibrational spectra, hydrogen bonding analysis and herbicidal activity study of mefenacet: A DFT approach. Journal of Molecular Structure, 1201, (2020) 127203. https://doi.org/10.1016/j.molstruc.2019.127203
  56. C. Karnan, A. Ram Kumar, S. Selvaraj, Quantum chemical computational studies on the structural aspects, spectroscopic properties, hirshfeld surfaces, donor-acceptor interactions and molecular docking of clascosterone: a promising antitumor agent. International Research Journal of Multidisciplinary Technovation, 6(4), (2024) 32-53. https://doi.org/10.54392/irjmt2444
  57. M.T. Gulluoglu, Y. Erdogdu, S. Yurdakul, Molecular structure and vibrational spectra of piperidine and 4-methylpiperidine by density functional theory and ab initio Hartree–Fock calculations. Journal of molecular structure, 834, (2007) 540-547. https://doi.org/10.1016/j.molstruc.2007.01.023
  58. R.M. Silverstein, G. Clayton Bassler, Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), (1962) 546. https://doi.org/10.1021/ed039p546
  59. S. Selvaraj, P. Rajkumar, M. Kesavan, S. Gunasekaran, S. Kumaresan, 2018. Experimental and theoretical investigations on spectroscopic properties of tropicamide. Journal of Molecular Structure, 1173, (2018) 52-62. https://doi.org/10.1016/j.molstruc.2018.06.097
  60. C.Y. Panicker, H.T. Varghese, K.C. Mariamma, K. John, S. Mathew, J. Vinsova, C. Van Alsenoy, Y.S. Mary, Spectroscopic investigations and computational study of 2‐[acetyl (4‐bromophenyl) carbamoyl]‐4‐chlorophenyl acetate. Journal of Raman Spectroscopy, 41(6), (2010) 707-716. https://doi.org/10.1002/jrs.2492
  61. J.N. Cheerlin Mishma, V. Bena Jothy, B. Narayana, Suresh N Kodlady, Naiyf S. Alharbi, Ghulam Abbas, S. Muthu, Synthesis, DFT, solvent effect and biological attributes of NLO active 4-bromo-2-((2-(2, 4-Dinitrophenyl) hydrazono) methyl) phenol-Potent drug anti-brain cancer. Journal of Molecular Structure, 1289, (2023) 135839. https://doi.org/10.1016/j.molstruc.2023.135839
  62. S. Selvaraj, A. Ram Kumar, T. Ahilan, M. Kesavan, S. Gunasekaran, S. Kumaresan, Multi spectroscopic and computational investigations on the electronic structure of oxyclozanide. Journal of the Indian Chemical Society, 99(10), (2022) 100676. https://doi.org/10.1016/j.jics.2022.100676
  63. K.R. Cousins (2011). Computer review of ChemDraw ultra 12.0.
  64. M. Karabacak, E. Kose, A. Atac, A. M. Asiri, M. Kurt, Monomeric and dimeric structures analysis and spectroscopic characterization of 3, 5-difluorophenylboronic acid with experimental (FT-IR, FT-Raman, 1H and 13C NMR, UV) techniques and quantum chemical calculations. Journal of molecular structure, 1058, (2014), 79-96. https://doi.org/10.1016/j.molstruc.2013.10.064
  65. M.A.S. Sakr, F.F. Sherbiny, A.A. Sh. El-Etrawy, Hydrazone-based Materials; DFT, TD-DFT, NBO Analysis, Fukui Function, MESP Analysis, and Solar Cell Applications. Journal of Fluorescence, 32, (2022) 1857-1871. https://doi.org/10.1007/s10895-022-03000-6
  66. P. Jayaprakash, S. Selvaraj, A. Ram Kumar. A new organic compound (C9H12N2O2): crystal structure, characterization, Hirshfeld surface analysis, electronic properties, NLO properties, DFT calculation and molecular docking. Solid State Sciences, 154, (2024) 107587. https://doi.org/10.1016/j.solidstatesciences.2024.107587
  67. R. Suja, A. Rathika, V. S. Jeba Reeda, A. Arun Kumar, P. Divya, Synthesis, spectroscopic analysis (FT-IR, FT-Raman, UV, NMR), non-covalent interactions (RDG, IGM) and dynamic simulation on Bis (8 hydroxy quinoline) salicylate salicylic acid. Journal of Molecular Structure, 1310, (2024) 138231. https://doi.org/10.1016/j.molstruc.2024.138231
  68. V.S. Jeba Reeda, P. Divya, A. Amala Jeya Ranchani, A. Manikandan, Shakeel Alvi, Rashid Ali, Nazia Siddiqui, Nazrul Haq, S. Muthu, Ray Butcher, Saleem Javed, Comprehensive analysis of 2, 5-dimethyl-1-(naphthalen-1-yl)-1H-pyrrole: X-ray crystal structure, spectral, computational, molecular properties, docking studies, molecular dynamics, and MMPBSA. Journal of Molecular Structure, 1321, (2025) 140062. https://doi.org/10.1016/j.molstruc.2024.140062
  69. X. Chen, H. Li, L. Tian, Q. Li, J. Luo, Y. Zhang, Analysis of the physicochemical properties of acaricides based on Lipinski's rule of five. Journal of computational biology, 27(9), (2020) 1397-1406. https://doi.org/10.1089/cmb.2019.0323
  70. E. Mohanapriya, S. Elangovan, N. Kanagathara, M.K. Marchewka, Jan Janczak, P. Revathi, Density functional theory calculations, structural and spectroscopic characterization, and solvent-dependent HOMO-LUMO studies of 2-nitro-4-methylanilinium benzenesulfonate, Journal of Molecular Structure, 1317, (2024) 139147. https://doi.org/10.1016/j.molstruc.2024.139147
  71. S. Akshay Kalyan, N. Kanagathara, M.K. Marchewka, Jan Janczak, K. Senthilkumar, Structure, Spectroscopy, and Theoretical insights on Co-crystals of 2, 4-Diamino-6-Methyl-1, 3, 5-Triazine Bis (4-Aminobenzoic acid) Monohydrate as a promising anti-cancer agent, Physica B: Condensed Matter, 679, (2024) 415807. https://doi.org/10.1016/j.physb.2024.415807