Abstract

Gastrointestinal (GI) abnormalities, such as polyps and ulcers, detected through endoscopic imaging are critical for diagnosing severe conditions like colorectal cancer. Accurate detection requires handling challenges such as subtle abnormalities and imbalanced datasets. Traditional detection methods often face difficulties in optimizing model parameters, segmenting abnormalities accurately, and maintaining a balance between speed and precision. The objective is to develop an efficient and robust hybrid technique, Dynamic vortex search-tuned Customized You Only Look Once version 8 (DVS-CYOLOv8), for enhanced detection and classification of GI abnormalities, DVS is utilized for optimizing hyper parameters such as anchor boxes and confidence thresholds while also identifying critical regions of interest. CYOLOv8 leverages advanced segmentation and multi-scale feature detection for real-time performance. A benchmark dataset of annotated endoscopic images covering a range of GI abnormalities is utilized. Preprocessing includes Median Filtering and Contrast Limited Adaptive Histogram Equalization (CLAHE) to suppress noise and improve contrast. Gradient-based techniques are applied for texture and boundary feature extraction. CYOLOv8 captures abnormalities and segments their boundaries with precision, adapting to abnormalities of varying sizes through its multi-scale architecture. DVS optimizes model configuration and enhances sensitivity by focusing on key regions, reducing false positives. It achieves exceptional accuracy (99.11%), precision (98.24%), recall (98.18%), and F1-score (97.66%), outperforming standalone techniques. That presents a scalable and effective clarification for GI abnormality detection, leading to enhanced clinical diagnostics.

Keywords

GI abnormalities, Endoscopic imaging, Medical images data, Dynamic vortex search-tuned Customized YOLOv8 (DVS-CYOLOv8 arch),

Downloads

Download data is not yet available.

References

  1. M.L. Zhang, A. Neyaz, D. Patil, J. Chen, M. Dougan, V. Deshpande, Immune‐related adverse events in the GI tract: diagnostic utility of upper GI biopsies. Histopathology, 76(2), (2020) 233−243. https://doi.org/10.1111/his.13963
  2. S. Nazarian, I. Gkouzionis, M. Kawka, M. Jamroziak, J. Lloyd, A. Darzi, N. Patel, D.S. Elson, C.J. Peters, Real-time tracking and classification of tumor and nontumor tissue in upper GI cancers using diffuse reflectance spectroscopy for resection margin assessment. JAMA surgery, 157(11), (2022) e223899−e223899. https://doi.org/10.1001/jamasurg.2022.3899
  3. R. Nudel, V. Appadurai, A.J. Schork, A. Buil, J. Bybjerg-Grauholm, A.D. Børglum, M.J. Daly, O. Mors, D.M. Hougaard, P.B. Mortensen, T. Werge, A large population-based investigation into the genetics of susceptibility to GI infections and the link between GI infections and mental illness. Human genetics, 139, (2020) 593−604. https://doi.org/10.1007/s00439-020-02140-8
  4. A.R. Blaser, M. Padar, M. Mändul, M. Elke, G. Engel, C. Fischer, K. Giabicani, M. Gold, T. Hess, B. Hiesmayr, M. Jakob, S.M., Development of the GI dysfunction score (GIDS) for critically ill patients–A prospective multicenter observational study (iSOFA study). Clinical Nutrition, 40(8), (2021) 4932−4940. https://doi.org/10.1016/j.clnu.2021.07.015
  5. C.Y. Lam, O.S. Palsson, W.E. Whitehead, A.D. Sperber, H. Tornblom, M. Simren, I. Aziz, Rome IV functional GI disorders and health impairment in subjects with hypermobility spectrum disorders or hypermobile Ehlers-Danlos syndrome. Clinical Gastroenterology and Hepatology, 19(2), (2021) 277−287. https://doi.org/10.1016/j.cgh.2020.02.034
  6. J. Lasekan, Y. Choe, S. Dvoretskiy, A. Devitt, S. Zhang, A. Mackey, K. Wulf, R. Buck, C. Steele, M. Johnson, G. Baggs, Growth and GI tolerance in healthy term infants fed milk-based infant formula supplemented with five human milk oligosaccharides (HMOs): A randomized multicenter trial. Nutrients, 14(13), (2022) 2625. https://doi.org/10.3390/nu14132625
  7. T. Chaemsupaphan, J. Limsrivilai, C. Thongdee, A. Sudcharoen, A. Pongpaibul, N. Pausawasdi, P. Charatcharoenwitthaya, Patient characteristics, clinical manifestations, prognosis, and factors associated with GI cytomegalovirus infection in immunocompetent patients. BMC gastroenterology, 20, (2020) 1−12. https://doi.org/10.1186/s12876-020-1174-y
  8. R. Agarwala, S.S. Rana, R. Sharma, M. Kang, U. Gorsi, R. Gupta, GI failure is a predictor of poor outcome in patients with acute pancreatitis. Digestive Diseases and Sciences, 65, (2020) 2419−2426. https://doi.org/10.1007/s10620-019-05952-5
  9. R.S.E.E. Hassan, S.O.S. Osman, M.A.S. Aabdeen, W.E.A. Mohamed, R.S.E.E. Hassan, S.O.O. Mohamed, Incidence and root causes of surgical site infections after GI surgery at a public teaching hospital in Sudan. Patient Safety in Surgery, 14, (2020) 1−7. https://doi.org/10.1186/s13037-020-00272-4
  10. N. El Koofy, H.M.N. Eldin, W. Mohamed, M. Gad, S. Tarek, G. El Tagy, Impact of preoperative nutritional status on surgical outcomes in patients with pediatric GI surgery. Clinical and experimental pediatrics, 64(9), (2020) 473. https://doi.org/10.3345/cep.2020.00458
  11. G. Vanella, G. Capurso, C. Burti, L. Fanti, L. Ricciardiello, A.S. Lino, I. Boskoski, M. Bronswijk, A. Tyberg, G.K.K. Nair, S. Angeletti, GI mucosal damage in patients with COVID-19 undergoing endoscopy: an international multicentre study. BMJ open gastroenterology, 8(1), (2021) e000578. https://doi.org/10.1136/bmjgast-2020-000578
  12. F.W.D. Tai, O.S. Palsson, C.Y. Lam, W.E. Whitehead, A.D. Sperber, H. Tornblom, M. Simren, I. Aziz, Functional GI disorders are increased in joint hypermobility‐related disorders with concomitant postural orthostatic tachycardia syndrome. Neurogastroenterology & Motility, 32(12), (2020) e13975. https://doi.org/10.1111/nmo.13975
  13. I. Iqbal, K. Walayat, M.U. Kakar, J. Ma, Automated identification of human GI tract abnormalities based on a deep convolutional neural network with endoscopic images. Intelligent Systems with Applications, 16, (2022) 200149. https://doi.org/10.1016/j.iswa.2022.200149
  14. J.Y. Park, Image-enhanced endoscopy in upper GI disease: focusing on texture and color enhancement imaging and red dichromatic imaging. Clinical endoscopy, (2024). https://doi.org/10.5946/ce.2024.159
  15. M.A. Berbís, J. Aneiros-Fernández, F.J.M. Olivares, E. Nava, A. Luna, Role of AI in multidisciplinary imaging diagnosis of GI diseases. World Journal of gastroenterology, 27(27), (2021) 4395. https://dx.doi.org/10.3748/wjg.v27.i27.4395
  16. A. Sharma, R. Kumar, P. Garg, DL-based prediction model for diagnosing GI diseases using endoscopy images. International Journal of Medical Informatics, 177, (2023) 105142. https://doi.org/10.1016/j.ijmedinf.2023.105142
  17. Q. He, S. Bano, O.F. Ahmad, B. Yang, X. Chen, P. Valdastri, L.B. Lovat, D. Stoyanov, S. Zuo, DL-based anatomical site classification for upper GI endoscopy. International journal of computer assisted radiology and surgery, 15, (2020) 1085−1094. https://doi.org/10.1007/s11548-020-02148-5
  18. H. Yu, R. Singh, S.H. Shin, K.Y. Ho, AI in upper GI endoscopy‐current status, challenges and future promise. Journal of Gastroenterology and Hepatology, 36(1), (2021) 20−24. https://doi.org/10.1111/jgh.15354
  19. J. Wu, J. Chen, J. Cai, Application of AI in GI endoscopy.Journal of Clinical Gastroenterology, 55(2), (2021) 110−120. https://journals.lww.com/jcge/toc/2021/02000
  20. M.N. Noor, M. Nazir, I. Ashraf, N.A. Almujally, M. Aslam, S. Fizzah Jilani, GastroNet: A robust attention‐based DL and cosine similarity feature selection framework for GI disease classification from endoscopic images. CAAI Transactions on Intelligence Technology, (2023). https://doi.org/10.1049/cit2.12231
  21. J. Yogapriya, V. Chandran, M.G. Sumithra, P. Anitha, P. Jenopaul, C. Suresh Gnana Dhas, GI tract disease classification from wireless endoscopy images using pretrained DL model. Computational and mathematical methods in medicine, 2021(1), (2021) 5940433. https://doi.org/10.1155/2021/5940433
  22. R. Pannala, K. Krishnan, J. Melson, M.A. Parsi, A.R. Schulman, S. Sullivan, G. Trikudanathan, A.J. Trindade, R.R. Watson, J.T. Maple, D.R. Lichtenstein, AI in GI endoscopy. VideoGIE, 5(12), (2020) 598−613. https://doi.org/10.1016/j.vgie.2020.08.013
  23. K. Ramamurthy, T.T. George, Y. Shah, P. Sasidhar, A novel multi-feature fusion method for classification of GI diseases using endoscopy images. Diagnostics, 12(10), (2022) 2316. https://doi.org/10.3390/diagnostics12102316
  24. S. Wang, Y. Cong, H. Zhu, X. Chen, L. Qu, H. Fan, Q. Zhang, M. Liu, Multi-scale context-guided deep network for automated lesion segmentation with endoscopy images of GI tract. IEEE Jour, (2020). https://doi.org/10.1109/JBHI.2020.2997760
  25. D.H. Ballard, N. Wake, J. Witowski, F.J. Rybicki, A. Sheikh, Radiological Society of North America (RSNA) 3D Printing Special Interest Group (SIG) clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: abdominal, hepatobiliary, and GI conditions. 3D printing in medicine, 6, (2020) 1−7. https://doi.org/10.1186/s41205-020-00065-6
  26. M. Owais, M. Arsalan, T. Mahmood, J.K. Kang, K.R. Park, Automated diagnosis of various GI lesions using a DL–based classification and retrieval framework with a large endoscopic database: model development and validation. Journal of medical Internet research, 22(11), (2020) e18563. https://doi.org/10.2196/18563
  27. S. Tang, X. Yu, C.F. Cheang, Y. Liang, P. Zhao, H.H. Yu, I.C. Choi, Transformer-based multi-task learning for classification and segmentation of GI tract endoscopic images. Computers in biology and medicine, 157, (2023) 106723. https://doi.org/10.1016/j.compbiomed.2023.106723
  28. Z. Xiao, J. Lu, X. Wang, N. Li, Y. Wang, N. Zhao, WCE‐DCGAN: A data augmentation method based on wireless capsule endoscopy images for GI disease detection. IET Image Processing, 17(4), (2023) 1170−1180. https://doi.org/10.1049/ipr2.12704
  29. M. Hmoud Al-Adhaileh, E. Mohammed Senan, F.W. Alsaade, T.H.H. Aldhyani, N. Alsharif, A. Abdullah Alqarni, M.I. Uddin, M.Y. Alzahrani, E.D. Alzain, M.E. Jadhav, DL algorithms for detection and classification of GI diseases. Complexity, 2021(1), (2021) 6170416. https://doi.org/10.1155/2021/6170416
  30. V. Raut, R. Gunjan, V.V. Shete, U.D. Eknath, GI tract disease segmentation and classification in wireless capsule endoscopy using intelligent DL model. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 11(3), (2023) 606−622. https://doi.org/10.1080/21681163.2022.2099298
  31. https://www.kaggle.com/datasets/abdallahwagih/kvasir-dataset-for-classification-and-segmentation
  32. M. Nouman Noor, M. Nazir, S.A. Khan, I. Ashraf, O.Y. Song, Localization and classification of GI tract disorders using explainable AI from endoscopic images. Applied Sciences, 13(15), (2023) 9031. https://doi.org/10.3390/app13159031
  33. M. Obayya, F.N. Al-Wesabi, M. Maashi, A. Mohamed, M.A. Hamza, S. Drar, I. Yaseen, M.I. Alsaid, Modified salp swarm algorithm with DL based GI tract disease classification on endoscopic images. Ieee Access, 11, (2023) 25959−25967. https://doi.org/10.1109/ACCESS.2023.3256084
  34. T. Saeed, C. Kiong Loo, M.S. Safiruz Kassim, Ensembles of DL framework for stomach abnormalities classification. Computers, Materials & Continua, 70(3), (2022). https://doi.org/10.32604/cmc.2022.019076