Abstract

An eco-friendly and biocompatible alternative to the conventional chemical and physical synthesis methods is the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNP through plant, microbial, algal and enzyme is critically examined in this comprehensive overview. While nucleation and growth kinetics are governed by reaction parameters such as pH, temperature and extract concentration, information derived from spectroscopy, electron microscopy and computational modelling identifies phenolic, amino and protein functionalities to dominate reduction and stabilization. Green AgNPs have a wide range of functional variety in biomedical, environmental and catalytic applications. They have strong antibacterial, anticancer, photocatalytic and sensing properties. Although there are still challenges with reproducibility, mass production and long-term durability, comparative studies show advantages in energy efficiency, safety and environmental compatibility. Predictive control over particle qualities may be possible through the combination of experimental optimization with artificial intelligence (AI) and machine learning (ML). To ensure eco-friendly and industrially scalable applications, the emerging fields include hybrid synthesis techniques, life-cycle-oriented risk assessment and regulatory coordination. The integration of AI-based design and green chemistry is a ground-breaking approach to sustainable nanotechnology.

Keywords

Ag Nanoparticles, Green Synthesis, Sensors, Environment, Energy,

Downloads

Download data is not yet available.

References

  1. R.R. Vidyasagar, S.K. Patel, M. Singh, S.K. Singh, Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity, Materials Advances 4 (7) (2023) 1831–1849. https://doi.org/10.1039/D2MA01105K
  2. R. Vishwanath, B. Negi, Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry, 4, (2021) 100205. https://doi.org/10.1016/j.crgsc.2021.100205
  3. D. Kumar, S. Kumar, A.D. Gholap, R. Kumari, R. Tanwar, V. Kumar, M. Khalid, M.A. Faiyazuddin, comprehensive review on the biomass-mediated synthesis of silver nanoparticles: Opportunities and challenges. Journal of Environmental Chemical Engineering, 13(1), (2024) 115133. https://doi.org/10.1016/j.jece.2024.115133
  4. M.R. Khan, M.A. Urmi, C. Kamaraj, G. Malafaia, C. Ragavendran, M.M. Rahman, Green synthesis of silver nanoparticles with its bioactivity, toxicity and environmental applications: A comprehensive literature review. Environmental Nanotechnology, Monitoring & Management, 20, (2023) 100872. https://doi.org/10.1016/j.enmm.2023.100872
  5. F. Eker, E. Akdaşçi, H. Duman, M. Bechelany, S. Karav, Green Synthesis of Silver Nanoparticles Using Plant Extracts: A Comprehensive Review of Physicochemical Properties and Multifunctional Applications. International Journal of Molecular Sciences, 26(13), (2025) 6222. https://doi.org/10.3390/ijms26136222
  6. S. Shahzadi, Z. Fatima, M.N. Zafar, F.N. Zafar, M.R.S.A. Janjua, A review on green synthesis of silver nanoparticles (SNPs) using plant extracts: a multifaceted approach in photocatalysis, environmental remediation, and biomedicine. RSC Advances 15(5), (2025) 3858–3903. https://doi.org/10.1039/D4RA07519F
  7. S. Parmar, H. Kaur, J. Singh, A.S. Matharu, S. Ramakrishna, M. Bechelany, Recent advances in green synthesis of Ag NPs for extenuating antimicrobial resistance. Nanomaterials, 12(7), (2022) 1115. https://doi.org/10.3390/nano12071115
  8. S. Kaabipour, S. Hemmati, A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. Beilstein Journal of Nanotechnology, 12(1), (2021) 102-136. https://doi.org/10.3762/bjnano.12.9
  9. M. Moond, S. Singh, S. Sangwan, R. Devi, R. Beniwal, (2022). Green synthesis and applications of silver nanoparticles: a systematic review. AATCC Journal of Research, 9(6), 272-285. https://doi.org/10.1177/24723444221119847
  10. D. Gupta, A. Boora, A. Thakur, T.K. Gupta, Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environmental Research, 231, (2023) 116316. https://doi.org/10.1016/j.envres.2023.116316
  11. M. Fahim, A. Shahzaib, N. Nishat, A. Jahan, T.A. Bhat, A. Inam, Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications. JCIS Open, 16, (2024) 100125. https://doi.org/10.1016/j.jciso.2024.100125
  12. A.I. Osman, Y. Zhang, M. Farghali, A.K. Rashwan, A.S. Eltaweil, E.M. Abd El-Monaem, M.M. Badr, I. Ihara, D.W. Rooney, P.S. Yap, Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22(2), (2024) 841-887. https://doi.org/10.1007/s10311-023-01682-3
  13. A. Dhaka, S.C. Mali, S. Sharma, R. Trivedi, A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 6, (2023) 101108. https://doi.org/10.1016/j.rechem.2023.101108
  14. S.J. Nadaf, N.R. Jadhav, H.S. Naikwadi, P.L. Savekar, I.D. Sapkal, M.M. Kambli, I.A. Desai, Green synthesis of gold and silver nanoparticles: Updates on research, patents, and future prospects. OpenNano, 8, (2022) 100076. https://doi.org/10.1016/j.onano.2022.100076
  15. T.L. Pham, V.D. Doan, Q. Le Dang, T.A. Nguyen, T.L.H. Nguyen, T.D.T. Tran, T.P.L. Nguyen, T.K.A. Vo, T.H. Nguyen, D.L. Tran, Stable biogenic silver nanoparticles from Syzygium nervosum bud extract for enhanced catalytic, antibacterial and antifungal properties. RSC advances, 13(30), (2023) 20994-21007. https://doi.org/10.1039/D3RA02754F
  16. A. Wirwis, Z. Sadowski, Green synthesis of silver nanoparticles: optimizing green tea leaf extraction for enhanced physicochemical properties. ACS omega, 8(33), (2023) 30532-30549. https://doi.org/10.1021/acsomega.3c03775
  17. R. Kaur, P. Avti, V. Kumar, R. Kumar, Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles. Nano Express, 2(2), (2021) 020005. https://doi.org/10.1088/2632-959X/abf42a
  18. G. Habibullah, J. Viktorova, P. Ulbrich, T. Ruml, Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage. RSC advances, 12(47), (2022) 30386-30403. https://doi.org/10.1039/D2RA04667A
  19. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, S.L. Rokhum, Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC advances, 11(5), (2021) 2804-2837. https://doi.org/10.1039/D0RA09941D
  20. S.L. Ramírez-Rosas, E. Delgado-Alvarado, L.O. Sanchez-Vargas, A.L. Herrera-May, M.G. Peña-Juarez, J.A. Gonzalez-Calderon, Green route to produce silver nanoparticles using the bioactive flavonoid quercetin as a reducing agent and food anti-caking agents as stabilizers. Nanomaterials, 12(19), (2022) 3545. https://doi.org/10.3390/nano12193545
  21. P.K. Tyagi, S. Tyagi, D. Gola, A. Arya, S.A. Ayatollahi, M.M. Alshehri, J. Sharifi-Rad, Ascorbic acid and polyphenols mediated green synthesis of silver nanoparticles from Tagetes erecta L. aqueous leaf extract and studied their antioxidant properties. Journal of Nanomaterials, 2021(1), (2021) 6515419. https://doi.org/10.1155/2021/6515419
  22. C. Pattnaik, R. Mishra, A.K. Sahu, L.N. Sahoo, N.K. Sahoo, S.K. Tripathy, S. Sahoo, Green synthesis of glucose-capped stable silver nanoparticles: a cost-effective sensor for the selective detection of Hg 2+ ions in aqueous solutions. Sensors & Diagnostics, 2(3), (2023) 647-656. https://doi.org/10.1039/D3SD00019B
  23. E. Mirda, R. Idroes, K. Khairan, T.E. Tallei, M. Ramli, N. Earlia, A. Maulana, G. Mauer Idroes, M. Muslem, Z. Jalil, Synthesis of chitosan-silver nanoparticle composite spheres and their antimicrobial activities. Polymers, 13(22), (2021) 3990. https://doi.org/10.3390/polym13223990
  24. D.J. Boehmler, Z.J. O’Dell, C. Chung, K.R. Riley, Bovine serum albumin enhances silver nanoparticle dissolution kinetics in a size-and concentration-dependent manner. Langmuir, 36(4), (2020) 1053-1061. https://doi.org/10.1021/acs.langmuir.9b03251
  25. N.M. El-Deeb, M.A. Abo-Eleneen, L.A. Al-Madboly, M.M. Sharaf, S.S. Othman, O.M. Ibrahim, M.S. Mubarak, Biogenically synthesized polysaccharides-capped silver nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Frontiers in Bioengineering and Biotechnology, 8, (2020) 643. https://doi.org/10.3389/fbioe.2020.00643
  26. N.M. El-Deeb, M.A. Abo-Eleneen, L.A. Al-Madboly, M.M. Sharaf, S.S. Othman, O.M. Ibrahim, M.S. Mubarak, Biogenically synthesized polysaccharides-capped silver nanoparticles: immunomodulatory and antibacterial potentialities against resistant Pseudomonas aeruginosa. Frontiers in Bioengineering and Biotechnology, 8, (2020) 643. https://doi.org/10.1186/s43088-019-0031-y
  27. N. Cardullo, V. Muccilli, C. Tringali, Laccase-mediated synthesis of bioactive natural products and their analogues. RSC Chemical Biology, 3(6), (2022) 614-647. https://doi.org/10.1039/D1CB00259G
  28. N. Liaqat, N. Jahan, T. Anwar, H. Qureshi, Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in chemistry, 10, (2022) 952006. https://doi.org/10.3389/fchem.2022.952006
  29. M.M. El-Sheekh, M.A. Deyab, N.I. Hassan, S.E. Abu Ahmed, (2022). Green biosynthesis of silver nanoparticles using sodium alginate extracted from Sargassum latifolium and their antibacterial activity. Rendiconti Lincei. Scienze Fisiche e Naturali, 33(4), 867-878. https://doi.org/10.1007/s12210-022-01102-8
  30. A. Khan, T. Younis, M. Anas, M. Ali, Z.K. Shinwari, A.T. Khalil, K. Shahzad Munawar, H.E.A. Mohamed, K. Hkiri, M. Maaza, M.F. Seleiman Khan, N. Withania, coagulans-mediated green synthesis of silver nanoparticles: characterization and assessment of their phytochemical, antioxidant, toxicity, and antimicrobial activities. BMC Plant Biology, 25(1), (2025) 574. https://doi.org/10.1186/s12870-025-06533-7
  31. A.M. Abdel-Aty, A.Z. Barakat, R.I. Bassuiny, S.A. Mohamed, Statistical optimization, characterization, antioxidant and antibacterial properties of silver nanoparticle biosynthesized by saw palmetto seed phenolic extract. Scientific Reports, 13(1), (2023) 15605. https://doi.org/10.1038/s41598-023-42675-0
  32. M.J. Islam, N. Khatun, R.H. Bhuiyan, S. Sultana, M.A.A. Shaikh, M.N.A. Bitu, F. Chowdhury, S. Islam, Psidium guajava leaf extract mediated green synthesis of silver nanoparticles and its application in antibacterial coatings. RSC advances, 13(28), (2023) 19164-19172. https://doi.org/10.1039/D3RA03381C
  33. P. Gupta, N. Rai, A. Verma, D. Saikia, S.P. Singh, R. Kumar, S.K. Singh, D. Kumar, V. Gautam, Green-Based Approach to Synthesize Silver Nanoparticles Using the Fungal Endophyte Penicillium oxalicum and Their Antimicrobial, Antioxidant, and In Vitro Anticancer Potential. ACS omega, 8(33), (2023). 30788. https://doi.org/10.1021/acsomega.3c05396
  34. M.A. Basheer, K. Abutaleb, N.N. Abed, A.A. Mekawey, Mycosynthesis of silver nanoparticles using marine fungi and their antimicrobial activity against pathogenic microorganisms. Journal of Genetic Engineering and Biotechnology, 21(1), (2023) 127. https://doi.org/10.1186/s43141-023-00572-z
  35. A. Dede, M.T. Aytekin-Aydin, K. Güven, Green Biosynthesis of Silver Nanoparticles from Olive and Walnut-Related Bacteria, Synthesis, Characterization, and Antimicrobial Activity. Indian Journal of Microbiology, 63(4), (2023) 658-667. https://doi.org/10.1007/s12088-023-01127-z
  36. S.S. Salem, O.M. Ali, A.M. Reyad, K.A. Abd-Elsalam, A.H. Hashem, Pseudomonas indica-mediated silver nanoparticles: Antifungal and
  37. antioxidant biogenic tool for suppressing mucormycosis fungi. Journal of Fungi, 8(2), (2022) 126. https://doi.org/10.3390/jof8020126
  38. R. Algotiml, A. Gab-Alla, R. Seoudi, H.H. Abulreesh, M.Z. El-Readi, K. Elbanna, Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Scientific Reports, 12(1), (2022) 2421. https://doi.org/10.1038/s41598-022-06412-3
  39. C.K. Somasundaram, R. Atchudan, T. N. J. I. Edison, S. Perumal, R. Vinodh, A.K. Sundramoorthy, R.S. Babu, M. Alagan, Y.R. Lee, Sustainable synthesis of silver nanoparticles using marine algae for catalytic degradation of methylene blue. Catalysts, 11(11), (2021) 1377. https://doi.org/10.3390/catal11111377
  40. T.A. Devi, R.M. Sivaraman, S.S. Thavamani, T.P. Amaladhas, M.S. AlSalhi, S. Devanesan, M.M. Kannan, Green synthesis of plasmonic nanoparticles using Sargassum ilicifolium and application in photocatalytic degradation of cationic dyes. Environmental Research, 208, (2022) 112642. https://doi.org/10.1016/j.envres.2021.112642
  41. M. Saba, S. Farooq, A.H. Alessa, K.I. Bektas, A.O. Belduz, A.Z. Khan, A.A. Shah, M. Badshah, S. Khan, Green synthesis of silver nanoparticles using Keratinase from Pseudomonas aeruginosa-C1M, characterization and applications as novel multifunctional biocatalyst. BMC biotechnology, 25(1), (2025) 27. https://doi.org/10.1186/s12896-025-00959-5
  42. E. Hermosilla, M. Díaz, J. Vera, M.J. Contreras, K. Leal, R. Salazar, L. Barrientos, G. Tortella, O. Rubilar, Synthesis of antimicrobial chitosan-silver nanoparticles mediated by reusable chitosan fungal beads. International journal of molecular sciences, 24(3), (2023) 2318. https://doi.org/10.3390/ijms24032318
  43. Ritu, K.K. Verma, A. Das, P. Chandra, Phytochemical-based synthesis of silver nanoparticle: mechanism and potential applications. BioNanoScience, 13(3), (2023) 1359-1380. https://doi.org/10.1007/s12668-023-01125-x
  44. T. Ongtanasup, P. Kamdenlek, C. Manaspon, K. Eawsakul, Green-synthesized silver nanoparticles from Zingiber officinale extract: antioxidant potential, biocompatibility, anti-LOX properties, and in silico analysis. BMC Complementary Medicine and Therapies, 24(1), (2024) 84. https://doi.org/10.1186/s12906-024-04381-w
  45. M. Kassem Agha, B. Maatouk, R. Mhanna, M.H. El-Dakdouki, Catalytic degradation efficacy of silver nanoparticles fabricated using Actinidia deliciosa peel extract. Journal of Nanomaterials, 2024(1), (2024) 8813109. https://doi.org/10.1155/2024/8813109
  46. I. Kumar, C. Gangwar, B. Yaseen, P.K. Pandey, S.K. Mishra, R.M. Naik, Kinetic and mechanistic studies of the formation of silver nanoparticles by nicotinamide as a reducing agent. ACS omega, 7(16), (2022) 13778-13788. https://doi.org/10.1021/acsomega.2c00046
  47. B. Barik, B.S. Satapathy, G. Pattnaik, D.V. Bhavrao, K.P. Shetty, Sustainable synthesis of silver nanoparticles from Azadirachta indica: antimicrobial, antioxidant and in silico analysis for periodontal treatment. Frontiers in Chemistry, 12, (2024) 1489253. https://doi.org/10.3389/fchem.2024.1489253
  48. A. Corciovă, C. Mircea, A.F. Burlec, A. Fifere, I.T. Moleavin, A. Sarghi, C. Tuchiluș, B. Ivănescu, I. Macovei, Green synthesis and characterization of silver nanoparticles using a Lythrum salicaria extract and in vitro exploration of their biological activities. Life, 12(10), (2022) 1643. https://doi.org/10.3390/life12101643
  49. M. Asif, R. Yasmin, R. Asif, A. Ambreen, M. Mustafa, S. Umbreen, Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-response, 20(2), (2022) 15593258221088709. https://doi.org/10.1177/15593258221088709
  50. S. Pasieczna-Patkowska, M. Cichy, J. Flieger, Application of Fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules, 30(3), (2025) 684. https://doi.org/10.3390/molecules30030684
  51. P. Singh, I. Mijakovic, Strong antimicrobial activity of silver nanoparticles obtained by the green synthesis in Viridibacillus sp. extracts. Frontiers in microbiology, 13, (2022) 820048. https://doi.org/10.3389/fmicb.2022.820048
  52. N.K. Sharma, J. Vishwakarma, S. Rai, T.S. Alomar, N. AlMasoud, A. Bhattarai, Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS omega, 7(31), (2022) 27004-27020. https://doi.org/10.1021/acsomega.2c01400
  53. S. Singaravelu, F. Motsoene, H. Abrahamse, S.S. Dhilip Kumar, Green-synthesized metal nanoparticles: a promising approach for accelerated wound healing. Frontiers in bioengineering and biotechnology, 13, (2025) 1637589. https://doi.org/10.3389/fbioe.2025.1637589
  54. F. Nosrati, B. Fakheri, H. Ghaznavi, N. Mahdinezhad, R. Sheervalilou, B. Fazeli-Nasab, Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells. Scientific Reports, 15(1), (2025) 25474. https://doi.org/10.1038/s41598-025-05224-5
  55. D.M. Radulescu, V.A. Surdu, A. Ficai, D. Ficai, A.M. Grumezescu, E. Andronescu, Green synthesis of metal and metal oxide nanoparticles: a review of the principles and biomedical applications. International Journal of Molecular Sciences, 24(20), (2023) 15397. https://doi.org/10.3390/ijms242015397
  56. T.T.T. Nguyen, N.T.K. Tran, T.Q. Le, T.T.A. Nguyen, L.T.M. Nguyen, T. Van Tran, Passion fruit peel pectin/chitosan based antibacterial films incorporated with biosynthesized silver nanoparticles for wound healing application. Alexandria Engineering Journal, 69, (2023) 419-430. https://doi.org/10.1016/j.aej.2023.01.066
  57. W. Chu, P. Wang, Z. Ma, L. Peng, C. Guo, Y. Fu, L. Ding, Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. International Journal of Biological Macromolecules, 243, (2023) 125310. https://doi.org/10.1016/j.ijbiomac.2023.125310
  58. Sharma, S., Bose, A., Biswas, S., Sen, S., & Roy, I. (2025). Cyperus rotundus mediated green synthesis of silver nanoparticles for antibacterial wound dressing applications. Scientific Reports, 15(1), 18394. https://doi.org/10.1038/s41598-025-03555-x
  59. J. Nandhini, E. Karthikeyan, E.E. Rani, V.S. Karthikha, D.S. Sanjana, H. Jeevitha, S. Rajeshkumar, V. Venugopal, A. Priyadharshan, Advancing engineered approaches for sustainable wound regeneration and repair: harnessing the potential of green synthesized silver nanoparticles. Engineered Regeneration, 5(3), (2024) 306-325. https://doi.org/10.1016/j.engreg.2024.06.004
  60. M. Tharani, S. Rajeshkumar, K.A. Al-Ghanim, M. Nicoletti, N. Sachivkina, M. Govindarajan, Terminalia chebula-assisted silver nanoparticles: biological potential, synthesis, characterization, and ecotoxicity. Biomedicines, 11(5), (2023) 1472. https://doi.org/10.3390/biomedicines11051472
  61. P. Kumar, J. Dixit, A.K. Singh, V.D. Rajput, P. Verma, K.N. Tiwari, S.K. Mishra, T. Minkina, Mandzhieva, S. (2022). Efficient catalytic degradation of selected toxic dyes by green biosynthesized silver nanoparticles using aqueous leaf extract of Cestrum nocturnum L. Nanomaterials, 12(21), 3851. https://doi.org/10.3390/nano12213851
  62. S. Khan, T. Noor, N. Iqbal, L. Yaqoob, Photocatalytic dye degradation from textile wastewater: a review. ACS omega, 9(20), (2024) 21751-21767. https://doi.org/10.1021/acsomega.4c00887
  63. M. Sarkar, S. Denrah, M. Das, M. Das, Statistical optimization of bio-mediated silver nanoparticles synthesis for use in catalytic degradation of some azo dyes. Chemical Physics Impact, 3, (2021) 100053. https://doi.org/10.1016/j.chphi.2021.100053
  64. K.M. Aboelghait, W.E. Abdallah, I. Abdelfattah, A.M. El-Shamy, Green synthesis of silver nanoparticles by waste of Murcott Mandarin peel as a sustainable approach for efficient heavy metal removal from metal industrial wastewater. Separation and Purification Technology, 347, (2024) 127609. https://doi.org/10.1016/j.seppur.2024.127609
  65. S.B.N. Krishna, A.G. Sheik, K. Pillay, M.A. Hamza, M.Y.M. Elamir, S. Selim, Nanotechnology in action: silver nanoparticles for improved eco-friendly remediation. PeerJ, 12, (2024) e18191. https://doi.org/10.7717/peerj.18191
  66. N. Bashir, M. Afzaal, A.L. Khan, R. Nawaz, A. Irfan, K.S. Almaary, F. Dabiellil, M. Bourhia, Z. Ahmed, Green-synthesized silver nanoparticle-enhanced nanofiltration mixed matrix membranes for high-performance water purification. Scientific Reports, 15(1), (2025) 1001. https://doi.org/10.1038/s41598-024-83801-w
  67. M. Dahooe Balooch, A. Naeimi, P. Iranmanesh, S. Saeednia, A Green Silver Nanoparticles using Pistachio Wastes for Dyes Degradation Exposing Visible Light and Reduction of 4‐Nitrophenol. ChemistrySelect, 8(29), (2023) e202300652. https://doi.org/10.1002/slct.202300652
  68. N.H. Ibrahim, G.M. Taha, N.S.A. Hagaggi, M.A. Moghazy, Green synthesis of silver nanoparticles and its environmental sensor ability to some heavy metals. BMC chemistry, 18(1), (2024) 7. https://doi.org/10.1186/s13065-023-01105-y
  69. P. Borpujari, S. Khan, J. Dutta, D. Borah, Biochar-metal nanocomposites for azo dye removal: advancements, mechanisms, and future prospects. Discover Applied Sciences, 7(9), (2025) 1023. https://doi.org/10.1007/s42452-025-07706-7
  70. M. Mavaei, A. Chahardoli, Y. Shokoohinia, A. Khoshroo, A. Fattahi, One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities. Scientific reports, 10(1), (2020) 1762. https://doi.org/10.1038/s41598-020-58697-x
  71. P. Prema, V. Veeramanikandan, K. Rameshkumar, M.K. Gatasheh, A.A. Hatamleh, R. Balasubramani, P. Balaji, Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. Environmental Research, 204, (2022) 111915. https://doi.org/10.1016/j.envres.2021.111915
  72. K. Chand, D. Cao, D.E. Fouad, A.H. Shah, A.Q. Dayo, K. Zhu, L M.N. akhan, G. Mehdi, S. Dong, Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arabian Journal of Chemistry, 13(11), (2020) 8248-8261. https://doi.org/10.1016/j.arabjc.2020.01.009
  73. A. Kumar, M.R.S. Savanur, S.K. Singh, J. Singh, S. Bhattacharya, K. Asnani, B. Kumar, M. Kumar, S. Kumar, Recent advances in silver nanoparticles‐catalyzed reactions. ChemistrySelect, 10(5), (2025) e202403655. https://doi.org/10.1002/slct.202403655
  74. K.T. Khac, H.H. Phu, H.T. Thi, V.D. Thuy, H. Do Thi, Biosynthesis of silver nanoparticles using tea leaf extract (Camellia sinensis) for photocatalyst and antibacterial effect. Heliyon, 9(10), (2023). https://doi.org/10.1016/j.heliyon.2023.e20707
  75. V.N. Anjana, M. Joseph, S. Francis, A. Joseph, E.P. Koshy, B. Mathew, Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications. Artificial cells, nanomedicine, and biotechnology, 49(1), (2021) 438-449. https://doi.org/10.1080/21691401.2021.1925678
  76. Z. Othman, A. Sinopoli, H.R. Mackey, K.A. Mahmoud, Efficient Photocatalytic Degradation of Organic Dyes by AgNPs/TiO2/Ti3C2Tx MXene Composites under UV and Solar Light. ACS Omega, 6(49), (2021) 33325–33338. https://doi.org/10.1021/acsomega.1c03189
  77. M. Salve, A. Mandal, K. Amreen, P.K. Pattnaik, S. Goel, Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform. Microchemical Journal, 157, (2020) 104973. https://doi.org/10.1016/j.microc.2020.104973
  78. L.A. Faustino, L.D. de Angelis, E.C. de Melo, G. Farias, E.C. dos Santos, C.R. Miranda, A.G. Buzanich, R.M. Torresi, P.F. de Oliveira, S.I.C. de Torresi, Urea synthesis by Plasmon-Assisted N2 and CO2 co-electrolysis onto heterojunctions decorated with silver nanoparticles. Chemical Engineering Journal, 513, (2025) 163072. https://doi.org/10.1016/j.cej.2025.163072
  79. T.N.J.I. Edison, R. Atchudan, N. Karthik, J. Balaji, D. Xiong, Y.R. Lee, Catalytic degradation of organic dyes using green synthesized N-doped carbon supported silver nanoparticles. Fuel, 280, (2020) 118682. https://doi.org/10.1016/j.fuel.2020.118682
  80. F. Beck, M. Loessl, A.J. Baeumner, Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchimica Acta, 190(3), (2023) 91. https://doi.org/10.1007/s00604-023-05666-6
  81. N. Srikhao, A. Ounkaew, P. Kasemsiri, S. Theerakulpisut, M. Okhawilai, S. Hiziroglu, Green synthesis of silver nanoparticles using the extract of spent coffee used for paper-based hydrogen peroxide sensing device. Scientific Reports, 12(1), (2022) 20099. https://doi.org/10.1038/s41598-022-22067-6
  82. M.A. Rashidi, S. Falahi, S. Farhang Dehghan, H. Ebrahimzadeh, H. Ghaneialvar, R. Zendehdel, Green synthesis of silver nanoparticles by Smyrnium cordifolium plant and its application for colorimetric detection of ammonia. Scientific Reports, 14(1), (2024) 24161. https://doi.org/10.1038/s41598-024-73010-w
  83. Z.O. Uygun, S. Tasoglu, Impedimetric antimicrobial peptide biosensor for the detection of human immunodeficiency virus envelope protein gp120. Iscience, 27(3), (2024). https://doi.org/10.1016/j.isci.2024.109190
  84. S.U. Pektaş, M. Keskin, O.C. Bodur, F. Arslan, Green synthesis of silver nanoparticles and designing a new amperometric biosensor to determine glucose levels. Journal of Food Composition and Analysis, 129, (2024)106133. https://doi.org/10.1016/j.jfca.2024.106133
  85. T. Thongwattana, R. Chaiyo, K. Ponsanti, B. Tangnorawich, P. Pratumpong, S. Toommee, R. Jenjob, S.G. Yang, Y. Parcharoen, S. Natphopsuk, C. Pechyen, Synthesis of Silver Nanoparticles and Gold Nanoparticles Used as Biosensors for the Detection of Human Serum Albumin-Diagnosed Kidney Disease. Pharmaceuticals, 17(11), (2024) 1421. https://doi.org/10.3390/ph17111421
  86. V. Rocha, Valorization of Plant By-Products in the Biosynthesis of Silver Nanoparticles. Immobilization of eco-friendly nanoparticles on different materials: towards promising nanoplatforms for removal of pollutants from water, (2024) 58. https://doi.org/10.1007/s11356-024-32180-w
  87. Y. Jin, J. Lin, A. Sathiyaseelan, X. Zhang, M.H. Wang, Comparative studies on antibacterial, antibiofilm, antioxidant, and cytotoxicity properties of chemically and Paeonia lactiflora extract-assisted synthesized silver nitroprusside nanoparticles. Journal of Drug Delivery Science and Technology, 92, (2024) 105269. https://doi.org/10.1016/j.jddst.2023.105269
  88. T.S. da Costa, M.R. da Silva, J.C.J. Barbosa, U.D.S.D. Neves, M.B. de Jesus, L. Tasic, Biogenic silver nanoparticles' antibacterial activity and cytotoxicity on human hepatocarcinoma cells (Huh-7). RSC advances, 14(4), (2024) 2192-2204. https://doi.org/10.1039/D3RA07733K
  89. G.E. Okuthe, B. Siguba, Acute Dermatotoxicity of Green-Synthesized Silver Nanoparticles (AgNPs) in Zebrafish Epidermis. Toxics, 13(7), (2025) 592. https://doi.org/10.3390/toxics13070592
  90. A. Rana, K. Yadav, S. Jagadevan, A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production, 272, (2020) 122880. https://doi.org/10.1016/j.jclepro.2020.122880
  91. P. Nie, Y. Zhao, H. Xu, Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. Ecotoxicology and Environmental Safety, 253, (2023) 114636. https://doi.org/10.1016/j.ecoenv.2023.114636
  92. M. Madhusudanan, J. Zhang, S. Pandit, P. Singh, G.J. Jeong, F. Khan, I. Mijakovic, Green Synthesis of Silver Nanoparticles: A Review of Polymer and Antimicrobial Drug Combinations for Enhanced Antimicrobial Applications. Advanced NanoBiomed Research, (2025) 2400194. https://doi.org/10.1002/anbr.202400194
  93. U. Ramzan, W. Majeed, A.A. Hussain, F. Qurashi, S.U.R. Qamar, M. Naeem, J. Uddin, A. Khan, A. Al-Harrasi, S.I.A. Razak, T.Y. Lee, New insights for exploring the risks of bioaccumulation, molecular mechanisms, and cellular toxicities of AgNPs in aquatic ecosystem. Water, 14(14), (2022) 2192. https://doi.org/10.3390/w14142192
  94. A.M. Eid, S.E.D. Hassan, M.F. Hamza, S. Selim, M.S. Almuhayawi, M.H. Alruhaili, M.K. Tarabulsi, M.K. Nagshabandi, A. Fouda, Photocatalytic, antimicrobial, and cytotoxic efficacy of biogenic silver nanoparticles fabricated by Bacillus amyloliquefaciens. Catalysts, 14(7), (2024) 419. https://doi.org/10.3390/catal14070419
  95. M. Muhamad, N. Ab. Rahim, W.A. Wan Omar, N.N.S. Nik Mohamed Kamal, Cytotoxicity and Genotoxicity of Biogenic Silver Nanoparticles in A549 and BEAS‐2B Cell Lines. Bioinorganic Chemistry and Applications, 2022(1), (2022) 8546079. https://doi.org/10.1155/2022/8546079
  96. V.T. Veetil, V. Jayakrishnan, V. Aravindan, A.D. Rajeeve, S. Koolath, R. Yamuna, Biogenic silver nanoparticles incorporated hydrogel beads for anticancer and antibacterial activities. Scientific Reports, 14(1), (2024) 27269. https://doi.org/10.1038/s41598-024-79003-z
  97. H. Singh, M.F. Desimone, S. Pandya, S. Jasani, N. George, M. Adnan, A. Aldarhami, A.S. Bazaid, S.A. Alderhami, Revisiting the green synthesis of nanoparticles: uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. International journal of Nano medicine, (2023) 4727-4750. https://doi.org/10.2147/IJN.S419369
  98. Y. Khane, K. Benouis, S. Albukhaty, G.M. Sulaiman, M.M. Abomughaid, A. Al Ali, D. Aouf, F. Fenniche, S. Khane, W. Chaibi, A. Henni, H.D. Bouras, N. Dizge, Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials, 12(12), (2022) 2013. https://doi.org/10.3390/nano12122013
  99. H. Duman, F. Eker, E. Akdaşçi, A.M. Witkowska, M. Bechelany, S. Karav, Silver Nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials, 14(18), (2024) 1527. https://doi.org/10.3390/nano14181527
  100. D.J.R. Rufina, H. Uthayakumar, P. Thangavelu, Prediction of the size of green synthesized silver nanoparticles using RSM-ANN-LM hybrid modeling approach. Chemical Physics Impact, 6, (2023) 100231. https://doi.org/10.1016/j.chphi.2023.100231
  101. G.K. Gupta, D. Koli, R.K. Kapoor, Statistical optimization for greener synthesis of multi-efficient silver nanoparticles from the Hypocrea lixii GGRK4 culture filtrate and their ecofriendly applications. Frontiers in Nanotechnology, 6, (2024) 1384465. https://doi.org/10.3389/fnano.2024.1384465
  102. J.M. Do, J.W. Hong, H.S. Yoon, Microalgae-mediated green synthesis of silver nanoparticles: a sustainable approach using extracellular polymeric substances from Graesiella emersonii KNUA204. Frontiers in Microbiology, 16, (2025) 1589285. https://doi.org/10.3389/fmicb.2025.1589285
  103. F. Rodríguez-Félix, A.Z. Graciano-Verdugo, M.J. Moreno-Vásquez, I. Lagarda-Díaz, C.G. Barreras-Urbina, L. Armenta-Villegas, A. Olguín-Moreno, J.A. Tapia-Hernández, (2022). Trends in sustainable green synthesis of silver nanoparticles using Agri-Food waste extracts and their applications in health. Journal of Nanomaterials, 2022(1), (2022) 8874003. https://doi.org/10.1155/2022/8874003
  104. S.I. Manzoor, F. Jabeen, R. Patel, M.M.A. Rizvi, K. Imtiyaz, M.A. Malik, T.A. Dar, Green synthesis of biocompatible silver nanoparticles using Trillium govanianum rhizome extract: comprehensive biological evaluation and in silico analysis. Materials Advances, 6(2), (2025) 682-702. https://doi.org/10.1039/D4MA00959B
  105. M. Noga, J. Milan, A. Frydrych, K. Jurowski, Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: state of the art. International Journal of Molecular Sciences, 24(6), (2023) 5133. https://doi.org/10.3390/ijms24065133